K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2018

ngu

rứi mà ko biết

tau bày cho nè

cc

cc

cc

31 tháng 7 2017

a, Ta có:  P K 2 + Q K 2 = 169 = P Q 2

=> ∆KQP vuông tại K

b, Ta có:  sin P Q K ^ = P K P Q = 12 13

=>  P Q K ^ ≈ 67 0 22 '

=>   K P Q ^ = 90 0 - 67 0 22 ' = 22 0 38 '

Theo hệ thức lượng trong tam giác vuông ta có: KH.PQ = KP.KQ => KH =  60 13 cm

P K 2 = P H . P Q =>  P H = P K 2 P Q = 144 13 cm

c, Tứ giác AKBO có  A K B ^ = K A O ^ = K B O ^ = 90 0 => AKBO là hình chữ nhật => AB = KO

=> AB = KO  KH =>  A B m i n = KH <=> AB = KO = KH <=> O ≡ H

a: Xét ΔDEF vuông tại D có DI là đường cao ứng với cạnh huyền FE

nên \(DI^2=IF\cdot IE\)

hay IE=4,5(cm)

Xét ΔDEF vuông tại D có DI là đường cao ứng với cạnh huyền FE

nên \(DE^2=IE\cdot EF\)

hay DE=7,5(cm)

25 tháng 2 2018

Tự vẽ hình lấy chứ hình nó khó vẽ trên này lắm thông cảm 

 a) P và Q là tâm đường tròn nội tiếp các tam giác đồng dạng AHB và CHA nên

\(\frac{HP}{HQ}=\frac{AB}{AC}\)nên \(\Delta HPQ~\Delta ABC\left(c-g-c\right)\)

b) Từ câu a suy ra \(\widehat{HPQ}=\widehat{C}\)mà \(\widehat{C}=\widehat{A_1}\)

Nên \(\widehat{HPQ}=\widehat{A_1}\)( 1 )

Tứ giác HPKQ có \(\widehat{PHQ}=\widehat{PKQ}=90^o\)nên là tứ giác nội tiếp, suy ra \(\widehat{HPQ}=\widehat{HKP}\)( 2 )

Từ (1) VÀ (2) suy ra \(\widehat{A_1}=\widehat{HKP}\)do đó KP // AB. Chứng minh tương tự, KQ // AC.

c) Ta có : \(\widehat{C}=\widehat{HKP}=\widehat{MKP}\)tự chứng minh \(\widehat{MKP}=\widehat{M_1}\)(sử dụng kết quả ở câu b).

d) Ta có : \(\widehat{A_1}=\widehat{M_1}\left(=\widehat{C}\right)\)nên KM = KA. Tương tự KP =KA. Do đó năm điểm A, M, P, Q, N thuộc đường tròn (K; KA).

e) Từ câu a suy ra \(\widehat{HQP}=\widehat{C}\)nên HQEC là tứ giác nội tiếp, do đó \(\widehat{QEA}=\widehat{QHC}=45^o\)

Tam giác ADE có : \(\widehat{E}=45^o\)

\(\Rightarrow\) ADE là tam giác vuông cân.

25 tháng 2 2018

à câu cuối còn một cách nữa :)

Chứng minh \(BP\perp AQ\)tương tự ta cũng chứng minh \(CQ\perp AP\)

\(\Rightarrow\)\(AO\perp PQ\)(O là giao điểm của BP và CQ). Tam giác ADE có AO là tia phân giác góc A và \(AO\perp DE\)

\(\Rightarrow\)Tam giác AED vuông cân ( đpcm )