Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: P K 2 + Q K 2 = 169 = P Q 2
=> ∆KQP vuông tại K
b, Ta có: sin P Q K ^ = P K P Q = 12 13
=> P Q K ^ ≈ 67 0 22 '
=> K P Q ^ = 90 0 - 67 0 22 ' = 22 0 38 '
Theo hệ thức lượng trong tam giác vuông ta có: KH.PQ = KP.KQ => KH = 60 13 cm
P K 2 = P H . P Q => P H = P K 2 P Q = 144 13 cm
c, Tứ giác AKBO có
A
K
B
^
=
K
A
O
^
=
K
B
O
^
=
90
0
=> AKBO là hình chữ nhật => AB = KO
=> AB = KO ≤ KH => A B m i n = KH <=> AB = KO = KH <=> O ≡ H
a: Xét ΔDEF vuông tại D có DI là đường cao ứng với cạnh huyền FE
nên \(DI^2=IF\cdot IE\)
hay IE=4,5(cm)
Xét ΔDEF vuông tại D có DI là đường cao ứng với cạnh huyền FE
nên \(DE^2=IE\cdot EF\)
hay DE=7,5(cm)
Tự vẽ hình lấy chứ hình nó khó vẽ trên này lắm thông cảm
a) P và Q là tâm đường tròn nội tiếp các tam giác đồng dạng AHB và CHA nên
\(\frac{HP}{HQ}=\frac{AB}{AC}\)nên \(\Delta HPQ~\Delta ABC\left(c-g-c\right)\)
b) Từ câu a suy ra \(\widehat{HPQ}=\widehat{C}\)mà \(\widehat{C}=\widehat{A_1}\)
Nên \(\widehat{HPQ}=\widehat{A_1}\)( 1 )
Tứ giác HPKQ có \(\widehat{PHQ}=\widehat{PKQ}=90^o\)nên là tứ giác nội tiếp, suy ra \(\widehat{HPQ}=\widehat{HKP}\)( 2 )
Từ (1) VÀ (2) suy ra \(\widehat{A_1}=\widehat{HKP}\)do đó KP // AB. Chứng minh tương tự, KQ // AC.
c) Ta có : \(\widehat{C}=\widehat{HKP}=\widehat{MKP}\)tự chứng minh \(\widehat{MKP}=\widehat{M_1}\)(sử dụng kết quả ở câu b).
d) Ta có : \(\widehat{A_1}=\widehat{M_1}\left(=\widehat{C}\right)\)nên KM = KA. Tương tự KP =KA. Do đó năm điểm A, M, P, Q, N thuộc đường tròn (K; KA).
e) Từ câu a suy ra \(\widehat{HQP}=\widehat{C}\)nên HQEC là tứ giác nội tiếp, do đó \(\widehat{QEA}=\widehat{QHC}=45^o\)
Tam giác ADE có : \(\widehat{E}=45^o\)
\(\Rightarrow\) ADE là tam giác vuông cân.
à câu cuối còn một cách nữa :)
Chứng minh \(BP\perp AQ\)tương tự ta cũng chứng minh \(CQ\perp AP\)
\(\Rightarrow\)\(AO\perp PQ\)(O là giao điểm của BP và CQ). Tam giác ADE có AO là tia phân giác góc A và \(AO\perp DE\)
\(\Rightarrow\)Tam giác AED vuông cân ( đpcm )