K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2023

Áp dụng hệ thức lượng vào tam giác vuông EGH có đường cao EH

\(\dfrac{1}{EH^2}=\dfrac{1}{EG^2}+\dfrac{1}{EF^2}\)

\(\dfrac{1}{30^2}=\dfrac{1}{\left(\dfrac{6EF}{5}\right)^2}+\dfrac{1}{EF^2}\)

\(\Rightarrow EF=5\sqrt{61}\)\(\Rightarrow EG=\dfrac{6.5\sqrt{61}}{5}=6\sqrt{61}\)

Áp dụng định lí Pytago vào tam giác GEF vuông tại E

\(\Rightarrow GF=\sqrt{\left(5\sqrt{61}\right)^2+\left(6\sqrt{61}\right)^2}=61\)

Áp dụng định lí Pytago vào tam giác EHG vuông tại H

\(GH=\sqrt{\left(6\sqrt{61}\right)^2-30^2}=36\)

\(\Rightarrow HF=61-36=25\)

22 tháng 9 2021

Có sai đề ko vậy bẹn

22 tháng 9 2021

ko ;-;

 

a: DH=căn DE^2-EH^2=12cm

Xét ΔDEF vuông tại D có DH là đường cao

nên DE^2=EH*EF
=>EF=15^2/9=25cm

DF=căn 25^2-15^2=20cm

HF=25-9=16cm

b: C=15+20+25=40+20=60cm

S=1/2*15*20=10*15=150cm2

DM=EF/2=25/2=12,5cm

c: Xét ΔEDF có HK//DF

nên HK/DF=EH/EF

=>HK/20=9/25

=>HK=180/25=7,2cm

28 tháng 9 2023

Áp dụng định lí Pytago vào tam giác EGF vuông tại E

\(GF=\sqrt{5^2+7^2}=\sqrt{74}\)

Ta có: \(EG.EF=EI.GF\)

\(\Rightarrow7.5=\sqrt{74}.EI\)

\(\Rightarrow EI=\dfrac{35}{\sqrt{74}}\)

12 tháng 7 2023

Hệ thức lượng trong tam giác vuông :

\(AB^2=BC.BH\left(1\right)\)

\(AC^2=BC.CH\left(2\right)\)

\(\left(1\right):\left(2\right)\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{25}{36}\left(\dfrac{AB}{AC}=\dfrac{5}{6}\right)\)

\(\Rightarrow BH=\dfrac{25}{36}CH\)

mà \(AH^2=BH.CH\)

\(\Rightarrow\dfrac{25}{36}CH^2=AH^2=30^2\)

\(\Rightarrow\dfrac{5}{6}CH=30\Rightarrow CH=\dfrac{30.6}{5}=36\) (\(\left(cm\right)\)

\(\Rightarrow BH=\dfrac{25}{36}.36=25\) \(\left(cm\right)\)

12 tháng 7 2023

A B C H

Xét tg vuông ABH và tg vuông ACH có

\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABH đồng dạng với tg ACH

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{HB}{AH}=\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Rightarrow\dfrac{30}{HC}=\dfrac{5}{6}\Rightarrow HC=\dfrac{6.30}{5}=36cm\)

\(\Rightarrow\dfrac{HB}{30}=\dfrac{5}{6}\Rightarrow HB=\dfrac{5.30}{6}=25cm\)

19 tháng 10 2021

\(1,\dfrac{2}{\sqrt{5}+2}+\dfrac{2}{\sqrt{5}-2}=\dfrac{2\sqrt{5}-4+2\sqrt{5}+4}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}=4\sqrt{5}\\ 2,\)

a, \(EF=EH+FH=5\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}DE^2=HE\cdot EF=5\\DF^2=HF\cdot EF=20\\DH=FH\cdot EH=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}DE=\sqrt{5}\left(cm\right)\\DF=2\sqrt{5}\left(cm\right)\\DH=2\left(cm\right)\end{matrix}\right.\)

b, \(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{2\sqrt{5}}{5};\cos\widehat{E}=\dfrac{DE}{EF}=\dfrac{\sqrt{5}}{5}\)

\(\tan\widehat{E}=\dfrac{DF}{DE}=\dfrac{2\sqrt{5}}{\sqrt{5}}=2;\cot\widehat{E}=\dfrac{1}{\tan\widehat{E}}=\dfrac{1}{2}\)

19 tháng 10 2021

bạn có thể ghi chi tiết lời giải giúp mình được không 

3 tháng 10 2021

\(a,\) Áp dụng Pytago \(EF=\sqrt{DE^2+DF^2}=25\left(cm\right)\)

Áp dụng HTL:

\(\left\{{}\begin{matrix}DE^2=EH\cdot EF\\DF^2=FH\cdot EF\\DH^2=FH\cdot EH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}EH=\dfrac{DE^2}{EF}=9\left(cm\right)\\FH=\dfrac{DF^2}{EF}=16\left(cm\right)\\DH=\sqrt{9\cdot16}=12\left(cm\right)\end{matrix}\right.\)

\(b,\sin\widehat{E}=\cos\widehat{F}=\dfrac{DF}{EF}=\dfrac{4}{5}\approx\left\{{}\begin{matrix}\sin53^0\\\cos37^0\end{matrix}\right.\\ \Rightarrow\widehat{E}\approx53^0;\widehat{F}\approx37^0\)

28 tháng 7 2018

ai giúp mik vs : cảm ơn mn nhé >3

29 tháng 7 2018

ai giúp mik đi huhu