K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

a, Áp dụng đ.lí Pytago vào tam giác DEF vuông tại D có:

\(DE^2+DF^2=EF^2\)

thay số:\(15^2+20^2=EF^2\)

\(\Rightarrow EF^2=625\)

\(\Rightarrow EF=\sqrt{625}=25\left(cm\right)\)

Áp dụng HTL vào tam giác DEF vuông tại D có

DE.DF=EF.D

I\(\Rightarrow15.20=25.EF\)

\(\Rightarrow EF=\frac{15.20}{25}=12\left(cm\right)\)

b, Làm tương tự như trên dc DI

21 tháng 9 2023

a) Xét tam giác DEF vuông tại D có đường cao DI ta có:
\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)

\(\Rightarrow DI^2=\dfrac{DE^2DF^2}{DE^2+DF^2}\)

\(\Rightarrow DI^2=\dfrac{15^2\cdot20^2}{15^2+20^2}=144\)

\(\Rightarrow DI=12\left(cm\right)\) 

b) Xét tam giác DEF vuông tại D có đường cao DI áp dụng Py-ta-go ta có:

\(DF^2=EF^2-DE^2\)

\(\Rightarrow DF^2=15^2-12^2=81\)

\(\Rightarrow DF=9\left(cm\right)\)

Ta có: \(DI=\sqrt{\dfrac{DF^2DE^2}{DF^2+DE^2}}\)

\(\Rightarrow DI=\sqrt{\dfrac{9^2\cdot12^2}{9^2+12^2}}=\dfrac{108}{15}\left(cm\right)\)

NV
21 tháng 9 2021

Áp dụng hệ thức lượng:

\(\dfrac{1}{DI^2}=\dfrac{1}{DE^2}+\dfrac{1}{DF^2}\)

\(\Leftrightarrow DI=\dfrac{DE.DF}{\sqrt{DE^2+DF^2}}=\dfrac{3.4}{\sqrt{3^2+4^2}}=2,4\)

\(EF=\sqrt{3^2+4^2}=5\left(cm\right)\)

DI=3*4/5=2,4cm

28 tháng 4 2023

4/5 ở đâu z 

3 tháng 7 2021

- Áp dụng định lý pitago vào tam giác DEF vuông tại D :

\(DE=\sqrt{FE^2-DF^2}=27\left(cm\right)\)

- Áp dụng hệ thức lượng vào tam giác DEF vuông tại D đường cao DI

\(\left\{{}\begin{matrix}DI.FE=DE.DF\\DE^2=EI.FE\\DF^2=FI.FE\end{matrix}\right.\)

 \(\Rightarrow\left\{{}\begin{matrix}DI=21,6\\EI=16,2\\FI=28,8\end{matrix}\right.\) ( cm )

Vậy ...

3 tháng 7 2021

pyta go \(=>DE=\sqrt{ÈF^2-DF^2}=\sqrt{45^2-36^2}=27cm\)

áp dụng hệ thức lượng

\(=>DI.EF=DE.DF=>DI=\dfrac{27.36}{45}=21,6cm\)

\(=>DE^2=EI.EF=>EI=\dfrac{27^2}{45}=16,2cm\)

\(=>FI=45-16,2=28,8cm\)

 

1 tháng 10 2021

...............................................................................

..........................................................................................

...........................................................................tgbvn JGKGITJNNFJFJNFJBFÒNBFOHRJ;FFJh' IIIor   ỉie

22 tháng 10 2021

\(\dfrac{DF}{EF}=\dfrac{4}{5}\)

\(\Leftrightarrow DF=\dfrac{4}{5}EF\)

\(\Leftrightarrow DF=24\left(cm\right)\)

\(\Leftrightarrow FE=30\left(cm\right)\)

\(\Leftrightarrow DI=14.4\left(cm\right)\)

a) Áp dụng định lí Pytago vào ΔEDF vuông tại D, ta được:

\(EF^2=DF^2+DE^2\)

\(\Leftrightarrow DF^2=13^2-9^2=88\)

hay \(DF=2\sqrt{22}\left(cm\right)\)

Xét ΔEDF vuông tại D có 

\(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{2\sqrt{22}}{13}\)

nên \(\widehat{E}\simeq46^0\)

\(\Leftrightarrow F=44^0\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔDFE vuông tại D có DI là đường cao ứng với cạnh huyền EF, ta được:

\(DI\cdot EF=DF\cdot DE\)

\(\Leftrightarrow DI=\dfrac{18\sqrt{22}}{13}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔDIF vuông tại I, ta được:

\(DF^2=DI^2+IF^2\)

\(\Leftrightarrow IF^2=DF^2-DI^2=\left(2\sqrt{22}\right)^2-\left(\dfrac{18\sqrt{22}}{13}\right)^2=\dfrac{7744}{169}\)

hay \(IF=\dfrac{88}{13}\left(cm\right)\)

Ta có: IE+IF=EF(I nằm giữa E và F)

nên \(IE=EF-IF=13-\dfrac{88}{13}=\dfrac{81}{13}\left(cm\right)\)

c) Xét tứ giác DMIN có 

\(\widehat{NDM}=90^0\)

\(\widehat{IND}=90^0\)

\(\widehat{IMD}=90^0\)

Do đó: DMIN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

Suy ra: DI=MN(Hai đường chéo của hình chữ nhật DMIN)

mà \(DI=\dfrac{18\sqrt{22}}{13}\left(cm\right)\)

nên \(MN=\dfrac{18\sqrt{22}}{13}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDIE vuông tại I có IM là đường cao ứng với cạnh huyền DE, ta được:

\(DM\cdot DE=DI^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔDIF vuông tại I có IN là đường cao ứng với cạnh huyền DF, ta được:

\(DN\cdot DF=DI^2\)(2)

Từ (1) và (2) suy ra \(DM\cdot DE=DN\cdot DF\)

25 tháng 3 2018

D E F H I K C G x y z

a) K là điểm đối xứng với H qua DE => DE là trung trực của KH => DH=DK (1)

    I là điểm đối xứng với H qua DF => DF là trung trực của IH => DH=DI (2)

Từ (1) và (2) => DI=DK (đpcm).

b) Gọi giao điểm của IK và DF là G

Gọi Cx là tia đối của CH ; Gy là tia đối của GH; Hz là tia đối của HC

Ta có: CE là trung trực của KH => CH=CK => CE là phân giác của ^KCH

=> CD là phân giác của ^ICx (hay ^GCx)

Tương tự: GD là phân giác của ^CGy

Xét \(\Delta\)HCG: ^CGy và ^GCx là 2 góc ngoài; CD và GD lân lượt là phân giác của ^GCx và ^CGy

Mà CD giao GD tại D => HD là phân giác ^CHG

Lại có: ^CHG và ^GHz là 2 góc kề bù;

HD là phân giác của ^CHG (cmt). Mà HD \(\perp\)HF => HF là phân giác của ^GHz

Xét \(\Delta\)HCG: ^GHz và ^HGI là 2 góc ngoài

HF là phân giác ^GHz, GF là phân giác ^HGI. HF giao GF tại F

=> CF là phân giác ^HCG

Thấy: ^HCG và ^KCH là 2 góc kề bù.

Mà CE và CF lần lượt là phân giác ^KCH và ^HCG => CE\(\perp\)CF hay CF\(\perp\)DE (đpcm).

a: DE^2=EI*EF

=>EF=6^2/3=12cm

=>DF=căn 12^2-6^2=6*căn 3(cm)

b: IE=6^2/4=9cm

EF=9+4=13cm

DE=căn IE*EF=3căn 13(cm)

DF=căn 4*13=2căn 13(cm)