K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

help meeeeeeeeeeeee

4 tháng 9 2021

Hướng dẫn:

undefined

Xét hai tam giác vuông EBC và FCB có:

BC (cạnh huyền chung)

BE = CF (giả thiết)

Vậy ∆EBC = ∆FCB (cạnh huyền cạnh góc vuông)

=> ˆFBC=ˆECBFBC^=ECB^

hay ∆ABC cân tại A

+ Nếu tam giác có ba đường cao bằng nhau, tương tự như chứng minh trên, ta chứng minh được ba góc của chúng bằng nhau, suy ra

đó là tam giác đều.

#Học tốt

22 tháng 11 2016

Ta có:

\(S=pr=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(\Leftrightarrow p^2r^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)

\(\Leftrightarrow r^2=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}\)

\(\Leftrightarrow\frac{1}{r^2}=\frac{p}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\frac{1}{\left(p-a\right)\left(p-b\right)}+\frac{1}{\left(p-b\right)\left(p-c\right)}+\frac{1}{\left(p-a\right)\left(p-c\right)}\)

\(\Leftrightarrow\frac{1}{r^2}=4\left(\frac{1}{\left(b+c-a\right)\left(a+c-b\right)}+\frac{1}{\left(a+c-b\right)\left(a+b-c\right)}+\frac{1}{\left(b+c-a\right)\left(a+b-c\right)}\right)\)

\(\Leftrightarrow\frac{1}{4r^2}=\frac{1}{c^2-\left(a-b\right)^2}+\frac{1}{a^2-\left(b-c\right)^2}+\frac{1}{b^2-\left(c-a\right)^2}\)

\(\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)(áp dụng \(x^2-y^2\le x^2\)

\(\Rightarrow4r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le1\)

\(\Rightarrow\frac{1}{r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}\ge4\left(1\right)\)

Ta lại có

\(S=\frac{a.ha}{2}=pr=\frac{r\left(a+b+c\right)}{2}\)

\(\Rightarrow ha=\frac{r\left(a+b+c\right)}{a}\)

\(\Rightarrow ha^2=\frac{r^2\left(a+b+c\right)^2}{a^2}\)

Tương tự

\(hb^2=\frac{r^2\left(a+b+c\right)^2}{b^2}\)

\(hc^2=\frac{r^2\left(a+b+c\right)^2}{c^2}\)

Cộng vế theo vế ta được

\(ha^2+hb^2+hc^2=r^2\left(a+b+c\right)^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{ha^2+hb^2+hc^2}=\frac{1}{r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{\left(a+b+c\right)^2}{ha^2+hb^2+hc^2}\ge4\)

22 tháng 11 2016

Bài làm này thật xuất sắc !

12 tháng 3 2020

Bài 2:

A B C D H 1

a) Xét tam giác BDC vuông tại C có:

\(DC^2+BC^2=DB^2\)

\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)

\(\Rightarrow BD=10\left(cm\right)\)

b) tam giác BDA nhé

Xét tamg giác ADH và tam giác BDA có:

\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)

c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)

\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )

\(\Rightarrow AD^2=BD.DH\)

d) Xét tan giác AHB và tam giác BCD có:

\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)

( góc= 45 độ bạn tự cm nhé )

e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)

\(\Rightarrow AD.AB=AH.BD\)

\(\Rightarrow AH=4,8\left(cm\right)\)

Dùng Py-ta-go làm nốt tính DH
 

12 tháng 3 2020

Bài 1

A B C H I D

a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:

\(AB^2+AC^2=BC^2\)

Thay AB=3cm, AC=4cm

\(\Rightarrow3^2+4^2=BC^2\)

<=> 9+16=BC2

<=> 25=BC2

<=> BC=5cm (BC>0)

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giácBài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. a) Tính độ dài AB (câu này tớ làm đc rồi)b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường...
Đọc tiếp

Bài 1c) Cho tam giác ABC cân tại A, phân giác BD. Biết góc BAC=120 độ. Tính các cạnh của tam giác

Bài 2: Cho tam giác ABC cân ở A, BC=8cm, phân giác của góc B cắt đường cao AH ở K, AK/AH=3/5. 

a) Tính độ dài AB (câu này tớ làm đc rồi)

b) Đường thẳng vuông góc với BK tại B cắt AH ở E. Tính EH (còn mỗi câu này thôi)

Bài 3: Cho tam giác ABC cân, có BA=BC=a, AC=b. Đường phân giác góc A cắt BC tại M, đường phân giác góc C cắt BA tại N

a) Cm: MN//AC 

b) Tính MN theo a,b

Bài 4: Cho tam giác ABC cân ở A, phân giác trong BD, BC=10cm, AB=15cm

a) Tính AD, DC

b) Đường phân giác ngoài góc B của tam giác ABC cắt đường thẳng AC tại D'. Tính D'C

Bài 5: Cho tam giác ABC có AB=5cm, AC=6cm, BC=7cm. Gọi G là trọng tâm tam giác ABC, O là giao điểm của 2 đường phân giác BD, AE

a) Tính độ dài đoạn thẳng AD

b) Cm: OG//AC

HD: a) AD=2,5cm b) OG//DM => OG//AC

Bài 6: Cho tam giác ABC. Gọi I là trung điểm của cạnh BC. Đường phân giác của góc AIB cắt cạnh AB ở M. Đường phân giác của góc AIC cắt cạnh AC ở N

a) CMR: MN//BC

b) Gọi giao điểm của DE và AM là O. CM: OM=ON

c) Tam giác ABC phải thoả mãn điều kiện gì để có MN=AI

d) Tam giác ABC phải thoả mãn điều kiện gì để có MN vuông góc với AI

0
15 tháng 4 2020

Bài 2 : 

vì BE vuông góc BD nên BE là đường phân giác ngoài của tam giác ABC.
theo tính chất đường phân giác (ngoài) ta có :

AEEB=ECBCAEEB=ECBC

⇒⇒ CE=AB.BCABCE=AB.BCAB

⇒⇒ CE=AE.23CE=AE.23

⇒⇒ 3CE=(CE+AC).23CE=(CE+AC).2

⇒⇒ 3CE=2CE+2AC3CE=2CE+2AC

⇒⇒ CE=2AC=6(cm) 

Bài 1: Giải

Nếu cạnh lớn nhất của tam giác đã cho là cạnh bé nhất của tam giác đồng dạng với nó thì ta có tỉ số đồng dạng đã cho là: (Gọi tạm tam giác có cạnh 12,16,18 m là tgiac 1, tgiac mới là tgiac 2)

k=Δ1Δ2=1218=23k=Δ1Δ2=1218=23

Chu vi của tam giác 1 là:

12+16+18=46(m)12+16+18=46(m)

⇒⇒ Chu vi của tam giác 2 là: 46:23=69(m)46:23=69(m)

Cạnh thứ hai của tam giác đồng dạng (2) là:

16:23=24(m)16:23=24(m)

Cạnh lớn nhất của tam giác đồng dạng (2) đó là:

69−24−18=27(m

Bài 3 tớ k bt lm 

15 tháng 4 2020

copy mạng nhớ ghi nguồn nhé bạn =))))

học tốt bro :))

~~