Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng hệ thức về cạnh góc vuông và hình chiếu lên cạnh huyền trong các tam giác vuông HCD và HCE ta có CD.CM = CE.CN (= C H 2 )
b, Sử dụng a) để suy ra các tỉ lệ về cạnh bằng nhau. Từ đó chứng minh được ∆ CMN:CDE(c-g-c)
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD, ta được:
\(CD\cdot CM=CH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE, ta được:
\(CE\cdot CN=CH^2\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\) suy ra \(CD\cdot CM=CE\cdot CN\)
b: Ta có: \(CD\cdot CM=CE\cdot CN\)
nên \(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)
Xét ΔCMN và ΔCED có
\(\dfrac{CM}{CE}=\dfrac{CN}{CD}\)
\(\widehat{MCN}\) chung
Do đó: ΔCMN\(\sim\)ΔCED
Bài 1 :
Có : \(\frac{AB}{AC}=\frac{5}{6}\Rightarrow AB=5k;AC=6k\) ( k \(\in N\) )
Xét \(\Delta ABC\) vuông tại A có :
\(BC^2=AB^2+AC^2\)
\(12^2=\left(5k\right)^2+\left(6k\right)^2\)
\(12^2=61k^2\)
\(\frac{144}{61}=k^2\Rightarrow k=\frac{12\sqrt{61}}{61}\) cm
Có AB = 5k = \(\frac{60\sqrt{61}}{61}\) cm
AC = 6k = \(\frac{72\sqrt{61}}{61}cm\)
Xét \(\Delta ABC\) vuông tại A có đường cao AH
=> \(AB^2=BH.BC\Rightarrow BH=\frac{300}{61}\) cm
Có : CH = BC - BH = \(\frac{432}{61}cm\)
Bài 2:
Xét \(\Delta\)CHD vuông ta có:
\(CH^2=CM.CD\)
Xét \(\Delta CHE\) vuông ta có:
\(CH^2=CN.CE\)
=> \(CH^2=CM.CD=CN.CE\)
Tự vẽ hình lấy chứ hình nó khó vẽ trên này lắm thông cảm
a) P và Q là tâm đường tròn nội tiếp các tam giác đồng dạng AHB và CHA nên
\(\frac{HP}{HQ}=\frac{AB}{AC}\)nên \(\Delta HPQ~\Delta ABC\left(c-g-c\right)\)
b) Từ câu a suy ra \(\widehat{HPQ}=\widehat{C}\)mà \(\widehat{C}=\widehat{A_1}\)
Nên \(\widehat{HPQ}=\widehat{A_1}\)( 1 )
Tứ giác HPKQ có \(\widehat{PHQ}=\widehat{PKQ}=90^o\)nên là tứ giác nội tiếp, suy ra \(\widehat{HPQ}=\widehat{HKP}\)( 2 )
Từ (1) VÀ (2) suy ra \(\widehat{A_1}=\widehat{HKP}\)do đó KP // AB. Chứng minh tương tự, KQ // AC.
c) Ta có : \(\widehat{C}=\widehat{HKP}=\widehat{MKP}\)tự chứng minh \(\widehat{MKP}=\widehat{M_1}\)(sử dụng kết quả ở câu b).
d) Ta có : \(\widehat{A_1}=\widehat{M_1}\left(=\widehat{C}\right)\)nên KM = KA. Tương tự KP =KA. Do đó năm điểm A, M, P, Q, N thuộc đường tròn (K; KA).
e) Từ câu a suy ra \(\widehat{HQP}=\widehat{C}\)nên HQEC là tứ giác nội tiếp, do đó \(\widehat{QEA}=\widehat{QHC}=45^o\)
Tam giác ADE có : \(\widehat{E}=45^o\)
\(\Rightarrow\) ADE là tam giác vuông cân.
à câu cuối còn một cách nữa :)
Chứng minh \(BP\perp AQ\)tương tự ta cũng chứng minh \(CQ\perp AP\)
\(\Rightarrow\)\(AO\perp PQ\)(O là giao điểm của BP và CQ). Tam giác ADE có AO là tia phân giác góc A và \(AO\perp DE\)
\(\Rightarrow\)Tam giác AED vuông cân ( đpcm )
a: Xét ΔCHD vuông tại H có HM là đường cao ứng với cạnh huyền CD, ta được:
\(CD\cdot CM=CH^2\left(1\right)\)
Xét ΔCHE vuông tại H có HN là đường cao ứng với cạnh huyền CE, ta được:
\(CE\cdot CN=CH^2\left(2\right)\)
Từ (1) và (2) suy ra \(CD\cdot CM=CE\cdot CN\)