Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A C D E H
a) Áp dụng hệ thức lượng vào 2 tam giác vuông: AHB và AHC ta có:
\(AH^2=AD.AB\)
\(AH^2=AE.AC\)
suy ra:\(AD.AB=AE.AC\)
b) \(AD.AB=AE.AC\)
=> \(\frac{AD}{AC}=\frac{AE}{AB}\)
Xét tam giác AED và tam giác ABC có:
\(\widehat{A}\)chung
\(\frac{AD}{AC}=\frac{AE}{AB}\)(cmt)
suy ra: \(\Delta AED~\Delta ABC\)
a, Áp dụng hệ thức giữa cạnh và đường cao trong các tam giác vuông
∆AHC và ∆AHB ta có:
AE.AC = A H 2 = AD.AB => ∆AHC ~ ∆AHB(c.g.c)
b. Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ∆ABC tính được AH = 3cm => DE = 3cm
Trong ∆AHB vuông ta có:
tan A B C ^ = A H H B => A B C ^ ≈ 56 0 , S A D E = 27 13 c m 2
Câu 1:
a: Xét ΔAHB vuông tạiH có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: \(BC=\sqrt{4^2+6^2}=2\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{4\cdot6}{2\sqrt{13}}=\dfrac{12}{\sqrt{13}}\left(cm\right)\)
\(AE=\dfrac{AH^2}{AC}=\dfrac{144}{13}:6=\dfrac{24}{13}\left(cm\right)\)
ta có
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
\(a+b-2\sqrt{ab}\ge0\)
\(a+b\ge2\sqrt{ab}\)
\(\frac{a+b}{2}\ge\sqrt{ab}\)
Ta có AH2=CH.BH=ab (1)
Gọi M là trung điểm của BC.
Xét tam giác AHM vuông tại H có AM là cạnh huyền --> AH\(\le\)AM (2)
Mà \(AM=\frac{BC}{2}=\frac{a+b}{2}\)(3)
Từ (1), (2) và (3) \(\Rightarrow a.b\le\frac{a+b}{2}\)
mk k bt đâu hưng vlog ạ ối dồi ôi
cái này giống toán 8 chứ k phải toán 9
-
a) Ta có:
- Diện tích tam giác ABC là S = 1/2 * AB * AC = 1/2 * 3cm * 4cm = 6cm^2.
- Vì AD là đường cao của tam giác ABC nên diện tích tam giác ABC cũng bằng 1/2 * AB * CD, tức là: S = 1/2 * AB * CD = 3CD.
Từ đó suy ra: CD = 2cm.
b) Gọi E là hình chiếu vuông góc của D trên BC. Ta có:
-
Tam giác ADE và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.
-
Tam giác BDE và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AC.
Do đó, ta có: -
AI/AB = DE/BC (vì tam giác ADE và tam giác ABC đồng dạng)
-
DE = AD - AE = AD - CD = AD - 2 (vì tam giác ADE vuông tại E và CD là hình chiếu của AD trên BC)
-
BC = AB + AC = 3 + 4 = 7
Từ đó suy ra: AI/AB = (AD - 2)/7
Vậy, ta có: AI*AB = (AD - 2)AB/7 = ADAB/7 - 2AB/7 = AD^2/3 - 2/7.
c) Gọi F là hình chiếu vuông góc của D trên AB. Ta có:
-
Tam giác ADF và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.
-
Tam giác CDF và tam giác ABC đồng dạng với tỉ số đồng dạng CD/AC.
Do đó, ta có: -
AI/AB = DF/AF (vì tam giác ADF và tam giác ABC đồng dạng)
-
AK/AC = CF/AF (vì tam giác CDF và tam giác ABC đồng dạng)
-
DF + CF = CD = 2
-
AF = AB - BF = AB - AK = 3 - AK (vì BF là hình chiếu của B trên AC và AK là hình chiếu của D trên AC)
Từ đó suy ra: AI/AB = DF/(DF + CF) = DF/2 = (AD^2 - AF^2)/(2AD^2) = (AD^2 - (AB - AK)^2)/(2AD^2) = (2AK*AC - AK^2)/(2AD^2) = AK/AD - AK^2/(2AD^2).
Từ b) và c), ta có: AIAB = AD^2/3 - 2/7 = AKAC*(1 - AK^2/(2AD^2)).
d) Gọi H là hình chiếu vuông góc của I trên BC. Ta có:
-
Tam giác ADH và tam giác ABC đồng dạng với tỉ số đồng dạng AD/AB.
-
Tam giác IDH và tam giác ABC đồng dạng với tỉ số đồng dạng AI/AC.
Do đó, ta có: -
ID/AI = DH/AB (vì tam giác IDH và tam giác ABC đồng dạng)
-
DH = CD - CH = 2 - CI (vì tam giác ADH vuông tại H và CI là hình chiếu của I trên BC)
-
AB = 3, AC = 4, BC = 7
Từ đó suy ra: ID/AI = (CD - CH)/AB = (2 - CI)/3.
Do đó, ta có: ID/AI = (2 - CI)/3 = (2 - AK)/4 (vì AIAB = AKAC từ c))
Từ đó suy ra: ID = (2AI - 3AK)/4.
Vậy, ta có: ID/AI = (2AI - 3AK)/(4AI) = 1 - 3AK/(2AI) = 1 - DH
18:22
Bạn tự vẽ hình.
(a) \(BC^2=AB^2+AC^2\left(Pythagoras\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
+) \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\hat{B}\approx53^o\)
+) \(\hat{C}=90^o-\hat{B}\approx90^o-53^o=37^o\)
(b) +) \(AB.AC=BC.AH\Leftrightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3\cdot4}{5}=2,4\left(cm\right)\)
\(\hat{A}=\hat{E}=\hat{F}=90^o\left(gt\right)\Rightarrow AEHF\) là hình chữ nhật.
Do đó, \(EF=AH\left(đpcm\right)\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Do đó: ΔADE\(\sim\)ΔACB