Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F
a) Xét tam giác CEF và tam giác AED:
CE=AE
^CEF=^AED => Tam giác CEF=Tam giác AED (c.g.c)
EF=ED
=> CF=AD (2 cạnh tương ứng) => CF=DB
=> ^FCE=^DAE => CF//AD (So le trong) hay CF//DB => ^FCD=^BDC (So le trong)
Xét tam giác BDC và tam giác FCD:
DB=CF
^BDC=^FCD => Tam giác BDC=Tam giác FCD (c.g.c)
DC chung
b) Tam giác BDC=Tam giác FCD (cmt) => ^BCD=^FDC (2 góc tương ứng) => DF//BC hay DE//BC (1)
=> FD=BC (2 cạnh tương ứng) => 1/2FD=1/2BC => DE=1/2BC (2)
Từ (1) và (2) => ĐPCM.
a)Xét \(\Delta DEC\)và\(\Delta FEA\)có:
EC=AE(E là trung điểm của AC)
\(\widehat{CED}=\widehat{AEF}\)(2 góc đối đỉnh)
DE=FE(gt)
=>\(\Delta DEC=\Delta FEA\left(c-g-c\right)\)
=>FA=DC(2 cạnh tương ứng)
b)Vì \(\Delta DEC=\Delta FEA\)=>\(\widehat{FAE}=\widehat{ECD}\)
Mà 2 góc này ở vị trí so le trong=>FA//DC
=>\(\widehat{FAD}=\widehat{CDB}\)(2 góc đồng vị)
Xét \(\Delta ADF\)và\(\Delta DBC\)có:
FA=DC(theo phần b)
\(\widehat{FAD}=\widehat{CDB}\)(cmt)
AD=DB(D là trung điểm của AB)
=>DF=BC ; \(\widehat{ADF}=\widehat{DBC}\)
mà \(DF=2DE\) ; Mà 2 góc này ở vị trí đồng vị
=>\(BC=2DE\) ; =>DE//BC
=>DE=\(\frac{1}{2}BC\)
Vậy DE=\(\frac{1}{2}\)BC;DE//BC
a: Xét tứ giác ADCF có
E là trung điểm của AC
E là trung điểm của DF
Do đó: ADCF là hình bình hành
Suy ra: AD//CF và AD=CF
=>BD=CF và BD//CF
Xét ΔBDC và ΔFCD có
\(\widehat{BDC}=\widehat{FCD}\)
DC chung
\(\widehat{BCD}=\widehat{FDC}\)
Do đó:ΔBDC=ΔFCD
b: Xét ΔACB có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//BC và DE=1/2BC
a: Xét ΔAED và ΔCEF có
EA=EC
\(\widehat{AED}=\widehat{CEF}\)
ED=EF
Do đó: ΔAED=ΔCEF
b: Xét ΔABC có
D là trung điểm của AB
E là trung điểm của AC
Do đó: DE là đường trung bình
=>DE//BC và DE=1/2BC
Xét tam giác ABC có:
D là TĐ của AB (gt)
E là TĐ của AC (gt)
=> DE là đường trung bình của tam giác ABC(định nghĩa đường trung bình của tam giác)
=> DE // BC (Tc đường trung bình trong tam giác)
Xét ΔABC có
D là trung điểm của AB(gt)
E là trung điểm của AC(gt)
Do đó: DE là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
hay DE//BC(Định lí 2 về đường trung bình của tam giác)
a: Xét ΔEDA và ΔEFC có
ED=EF
\(\widehat{DEA}=\widehat{FEC}\)(hai góc đối đỉnh)
EA=EC
Do đó: ΔEDA=ΔEFC
=>\(\widehat{EDA}=\widehat{EFC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên FC//AD
=>FC//BD
Ta có: ΔEDA=ΔEFC
=>DA=FC
mà DA=DB
nên FC=DB
Xét ΔDBC và ΔCFD có
DB=CF
\(\widehat{BDC}=\widehat{FCD}\)(hai góc so le trong, DB//FC)
DC chung
Do đó: ΔDBC=ΔCFD
=>\(\widehat{DCB}=\widehat{CDF}\)
mà hai góc này là hai góc ở vị trí so le trong
nên DF//BC
=>DE//BC
b: ΔDBC=ΔCFD
=>BC=FD
mà DE=1/2DF
nên \(DE=\dfrac{1}{2}BC\)
Chủ quan là cái gì vậy các cô giáo