K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

tam giác ABC có vuông ko?

7 tháng 5 2017

tam giác ABC là tam giác vuông hả bn?

9 tháng 4 2021
1/AH^2 = 1/AC^2 +1/AB^2
=1/6^2 + 1/8^2 =25/576
=> AH^2 =576/25
=> AH=24/5

Áp dụng định lí Pytago vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}=\dfrac{100}{48^2}\)

\(\Leftrightarrow AH^2=\left(\dfrac{48}{10}\right)^2\)

hay AH=4,8cm

Vậy: AH=4,8cm

góc AEH=góc ADH=góc DAE=90 độ

=>ADHE là hình chữ nhật

góc NED=góc NEH+góc DEH

=góc DAH+góc NHE

=góc BAH+góc B=90 độ

=>NE vuông góc ED(1)

góc MDE=góc MDH+góc EDH

=góc MHD+góc EAH

=góc HAC+góc C=90 độ

=>DM vuông góc ED(2)

Từ (1), (2) suy ra ENMD là hình thang vuông

\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

BH=6^2/10=3,6cm

=>DM=1,8cm

HC=8^2/10=6,4cm

=>EN=3,2cm

AH=6*8/10=4,8cm

=>ED=4,8cm

\(S_{ENMD}=\dfrac{1}{2}\cdot\left(EN+DM\right)\cdot ED=\dfrac{1}{2}\cdot\left(3,2+1,8\right)\cdot2,4=1,2\cdot5=6\left(cm^2\right)\)

a: AC=8cm

b: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

c: AH=4,8cm

16 tháng 1 2022

bn ơi câu a bn giải thích ra luôn giùm mik ik
câu b,c nx

AH=6*8/10=4,8cm

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

23 tháng 3 2022

a) Xét ΔABC và ΔHBA có
chung góc B
BAC = AHC (=90°)
=> ΔABC ∽ ΔHBA(gg)