K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

a,Xét \(\Delta HBA\) và \(\Delta ABC\) có :

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\widehat{B}:chung\)

\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\)

\(\Rightarrow AB^2=BH.BC\)

27 tháng 1 2016

bạn nhấn vào đúng 0 sẽ ra đáp án

27 tháng 1 2016

du

26 tháng 5 2021

Dài lắm bạn tham khảo.undefinedundefined

a: XétΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC∼ΔHAC

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=BH\cdot HC\)

c: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có 

góc C chung

Do đó: ΔCDE\(\sim\)ΔCAB

Suy ra: CD/CA=CE/CB

hay \(CD\cdot CB=CA\cdot CE\)

22 tháng 1 2022

A B C H D E

a/ Xét tam giác ABC và tam giác HAC có:

\(\widehat{C}chung.\)

\(\widehat{BAC}=\widehat{AHC}=90^o.\)

\(\Rightarrow\) Tam giác ABC ∼ Tam giác HAC (g - g).

b/ Xét tam giác ABC vuông tại A; AH là đường cao:

\(AH^2=BH.HC\) (Hệ thức lượng).

c/ Xét tam giác ABC và tam giác DEC có:

\(\widehat{C}chung.\)

\(\widehat{BAC}=\widehat{EDC}=90^o.\)

\(\Rightarrow\) Tam giác ABC ∼ Tam giác DEC (g - g).

d/ Tam giác ABC ∼ Tam giác DEC (cmt).

\(\Rightarrow\dfrac{BC}{EC}=\dfrac{AC}{DC}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow\dfrac{BC}{AC}=\dfrac{EC}{DC}.\)

Xét tam giác BEC và tam giác ADC có:

\(\dfrac{BC}{AC}=\dfrac{EC}{DC}.\)

\(\widehat{C}chung.\)

\(\Rightarrow\) Tam giác BEC ∼ Tam giác ADC (c - g - c).

20 tháng 11 2022

a: 

Xét ΔAHD có AH=HD và góc AHD=90 độ

nên ΔAHD vuông cân tại H

=>góc HAD=góc HDA=45 độ

=>góc ADE=45 độ

Xét tứ giác ABDE có góc EAB+góc EDB=180 độ

nên ABDE là tứ giác nội tiếp

=>góc ABE=góc ADE=45 độ

Xét ΔEAB vuông tại A có góc ABE=45 độ

nên ΔEAB vuông cân tại A

=>AE=AB

b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ

nên AMHB là tứ giác nội tiếp

=>góc AHM=góc ABM=45 độ

20 tháng 11 2022

a: 

Xét ΔAHD có AH=HD và góc AHD=90 độ

nên ΔAHD vuông cân tại H

=>góc HAD=góc HDA=45 độ

=>góc ADE=45 độ

Xét tứ giác ABDE có góc EAB+góc EDB=180 độ

nên ABDE là tứ giác nội tiếp

=>góc ABE=góc ADE=45 độ

Xét ΔEAB vuông tại A có góc ABE=45 độ

nên ΔEAB vuông cân tại A

=>AE=AB

b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ

nên AMHB là tứ giác nội tiếp

=>góc AHM=góc ABM=45 độ

a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc ACB chung

Do dó ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD/CE=CA/CB

=>ΔCDA đồng dạng với ΔCEB

=>EB/DA=BC/AC

mà BC/AC=AC/CH

nên EB/DA=AC/CH=BA/HA

=>BE/AD=BA/HA

=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)

\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)

b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2

nên góc AEB=45 độ

=>ΔABE vuông cân tại A

=>AM vuông góc với BE

BM*BE=BA^2

BH*BC=BA^2

Do đó: BM*BE=BH/BC

=>BM/BC=BH/BE

=>ΔBMH đồng dạng với ΔBCE

1 tháng 7 2020

A B C H D E

Bài làm:

Ta có: \(\Delta CDE~\Delta CAB\left(g.g\right)\)

vì: \(\hept{\begin{cases}\widehat{CDE}=\widehat{CAB}=90^0\\\widehat{ECD}=\widehat{BAC}\left(chung\right)\end{cases}}\)

\(\Rightarrow\frac{CD}{CA}=\frac{CE}{CB}\left(1\right)\)

Xét 2 tam giác: \(\Delta BEC\)và \(\Delta ADC\)có:

\(\hept{\begin{cases}\frac{CD}{CA}=\frac{CE}{CB}\left(1\right)\\\widehat{BCE}=\widehat{ACD}\left(chung\right)\end{cases}}\)

\(\Rightarrow\Delta BEC~\DeltaÂDC\left(c.g.c\right)\)

=> đpcm

Học tốt!!!!