Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
Do đó: ΔABC∼ΔHAC
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=BH\cdot HC\)
c: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
Do đó: ΔCDE\(\sim\)ΔCAB
Suy ra: CD/CA=CE/CB
hay \(CD\cdot CB=CA\cdot CE\)
A B C H D E
a/ Xét tam giác ABC và tam giác HAC có:
+ \(\widehat{C}chung.\)
+ \(\widehat{BAC}=\widehat{AHC}=90^o.\)
\(\Rightarrow\) Tam giác ABC ∼ Tam giác HAC (g - g).
b/ Xét tam giác ABC vuông tại A; AH là đường cao:
\(AH^2=BH.HC\) (Hệ thức lượng).
c/ Xét tam giác ABC và tam giác DEC có:
+ \(\widehat{C}chung.\)
+ \(\widehat{BAC}=\widehat{EDC}=90^o.\)
\(\Rightarrow\) Tam giác ABC ∼ Tam giác DEC (g - g).
d/ Tam giác ABC ∼ Tam giác DEC (cmt).
\(\Rightarrow\dfrac{BC}{EC}=\dfrac{AC}{DC}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow\dfrac{BC}{AC}=\dfrac{EC}{DC}.\)
Xét tam giác BEC và tam giác ADC có:
+ \(\dfrac{BC}{AC}=\dfrac{EC}{DC}.\)
+ \(\widehat{C}chung.\)
\(\Rightarrow\) Tam giác BEC ∼ Tam giác ADC (c - g - c).
a:
Xét ΔAHD có AH=HD và góc AHD=90 độ
nên ΔAHD vuông cân tại H
=>góc HAD=góc HDA=45 độ
=>góc ADE=45 độ
Xét tứ giác ABDE có góc EAB+góc EDB=180 độ
nên ABDE là tứ giác nội tiếp
=>góc ABE=góc ADE=45 độ
Xét ΔEAB vuông tại A có góc ABE=45 độ
nên ΔEAB vuông cân tại A
=>AE=AB
b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ
nên AMHB là tứ giác nội tiếp
=>góc AHM=góc ABM=45 độ
a:
Xét ΔAHD có AH=HD và góc AHD=90 độ
nên ΔAHD vuông cân tại H
=>góc HAD=góc HDA=45 độ
=>góc ADE=45 độ
Xét tứ giác ABDE có góc EAB+góc EDB=180 độ
nên ABDE là tứ giác nội tiếp
=>góc ABE=góc ADE=45 độ
Xét ΔEAB vuông tại A có góc ABE=45 độ
nên ΔEAB vuông cân tại A
=>AE=AB
b: Xét tứ giác AMHB có góc AMB=góc AHB=90 độ
nên AMHB là tứ giác nội tiếp
=>góc AHM=góc ABM=45 độ
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
A B C H D E
Bài làm:
Ta có: \(\Delta CDE~\Delta CAB\left(g.g\right)\)
vì: \(\hept{\begin{cases}\widehat{CDE}=\widehat{CAB}=90^0\\\widehat{ECD}=\widehat{BAC}\left(chung\right)\end{cases}}\)
\(\Rightarrow\frac{CD}{CA}=\frac{CE}{CB}\left(1\right)\)
Xét 2 tam giác: \(\Delta BEC\)và \(\Delta ADC\)có:
\(\hept{\begin{cases}\frac{CD}{CA}=\frac{CE}{CB}\left(1\right)\\\widehat{BCE}=\widehat{ACD}\left(chung\right)\end{cases}}\)
\(\Rightarrow\Delta BEC~\DeltaÂDC\left(c.g.c\right)\)
=> đpcm
Học tốt!!!!
a,Xét \(\Delta HBA\) và \(\Delta ABC\) có :
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
\(\Rightarrow AB^2=BH.BC\)