Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta tính được :
tan B= AC/AB=4/3
cot B= AB/AC=3/4
TAN c= AB/AC=3/4
COT C= AC/AB = 4/3
Dựa trên bài tập 14 trong sách giáo khoa ta có:
tan B= sinB/ cos B = 4/3 thay số vào ta tính đc sin B và cos B
tan C = sin C/ cos C = 3/4 thay số vào tính ta được sin C và cos C
=> tính đc tỷ số lượng giác.
(_ Mk chỉ bày cách tính hoy cậu tự làm để nhớ nhé !!_)
Ta có:
\(cosB=\dfrac{AB}{BC}\Rightarrow AB=BC.cosB=10.0,8=8\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}=6\left(cm\right)\)
b.
\(sinC=\dfrac{AB}{BC}=\dfrac{8}{10}=0,8\)
\(cosC=\dfrac{AC}{BC}=\dfrac{6}{10}=0,6\)
\(tanC=\dfrac{AB}{AC}=\dfrac{8}{6}=\dfrac{4}{3}\)
\(cotC=\dfrac{AC}{AB}=\dfrac{3}{4}\)
A B C a 2a
Áp dụng định lí Pi-ta-go cho \(\Delta ABC\)vuông tại A, ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=4a^2-a^2\)
\(\Leftrightarrow AC=\sqrt{3a^2}=a\sqrt{3}\)
a) Tỉ số lượng giác của góc B là:
\(\sin B=\frac{a\sqrt{3}}{2a}=\frac{\sqrt{3}}{2}\)
\(\cos B=\frac{a}{2a}=\frac{1}{2}\)
\(\tan B=\frac{a\sqrt{3}}{a}=\sqrt{3}\)
\(\cot B=\frac{a}{a\sqrt{3}}=\frac{1}{\sqrt{3}}\)
b) Tỉ số lượng giác của góc C là:
\(\sin C=\cos B=\frac{1}{2}\)( Định lí )
\(\cos C=\sin B=\frac{\sqrt{3}}{2}\)( Định lí )
\(\tan C=\cot B=\frac{1}{\sqrt{3}}\)( Định lí )
\(\cot C=\tan B=\sqrt{3}\)( Định lí )
Chúc bn hok tốt
cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C
1/ Hình vẽ: vẽ dễ bạn tự vẽ ha
Có Xét tam giác vuông ABC
\(\widehat{B}+\widehat{C}=90^o\)
\(60^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}=30^o\)
\(sin\widehat{B}=\frac{AC}{BC}=\frac{AC}{20}=sin60^o\)
\(\Rightarrow AC=sin60^o\cdot20=10\sqrt{3}\)(cm)
\(sin\widehat{C}=\frac{AB}{BC}=\frac{AB}{20}=sin30^o\)
\(\Rightarrow AB=sin30^o\cdot20=10\)(cm)
2/
a, ΔMNP cân tại M => MN=MP
=> góc MND=MPD
Xét ΔMND và ΔMPD có:
MN=MP
góc MND=MPD
góc NMD=PMD ( đường phân giác MD )
=> ΔMND = ΔMPD (g.c.g)
b. ΔMND = ΔMPD => góc MDN=MDP = 90 độ
Xét tam giác MDN có góc MDN = 90 độ,ta có:
MN2=MD2+ND2MN2=MD2+ND2
=> 132=122+ND2132=122+ND2
=> ND2=25ND2=25
=> ND = 5
c. Xét ΔHMD và ΔKMD có:
MD chung
góc HMD=KMD
góc MHD=MKD = 90 độ
=> ΔHMD = ΔKMD ( cạnh huyền-góc nhọn)
d. Xét tam giác HDN và tam giác KDP có:
góc HND=KPD
góc NHD=PKD = 90 độ
ND=DP ( do ΔMND = ΔMPD)
=> tam giác HDN = tam giác KDP
=> HD=KD (1)
Có: MN=MH+HN
MP=MK+KP
mà MN=MP ( do ΔMND = ΔMPD )
NH=KP
=> MH=MK ( 2)
Từ (1) (2) =>
Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{25^2-20^2}=15\left(cm\right)\)
a) Áp dụng tslg trong tam giác ABC vuông tại A:
\(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\\cosB=\dfrac{AB}{BC}=\dfrac{20}{25}=\dfrac{4}{5}\\tanB=\dfrac{AC}{AB}=\dfrac{15}{20}=\dfrac{3}{4}\\cotB=\dfrac{AB}{AC}=\dfrac{20}{15}=\dfrac{4}{3}\end{matrix}\right.\)
b) Ta có: \(tanC=\dfrac{AB}{AC}=\dfrac{20}{15}=\dfrac{4}{3}\)
\(P=2cosB-3tanC=2.\dfrac{4}{5}-3.\dfrac{4}{3}=-\dfrac{12}{5}\)
sao bằng âm z bn mình ra dương mà