K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 2 2024

Lời giải:

Xét tam giác $BAM$ và $CDM$ có:

$BM=CM$

$AM=DM$

$\widehat{BMA}=\widehat{CMD}$ (đối đỉnh)

$\Rightarrow \triangle BAM=\triangle CDM$ (c.g.c)

$\Rightarrow AB=CD$ và $\widehat{BAM}=\widehat{CDM}$

Mà 2 góc này ở vị trí so le trong nên $AB\parallel CD$

$AB\perp AC$ nên $CD\perp AC\Rightarrow \widehat{DCA}=90^0$

Xét tam giác $BAC$ và $DCA$ có:

$\widehat{BAC}=\widehat{DCA}=90^0$

$BA=CD$ (cmt)

$AC$ chung

$\Rightarrow \triangle BAC=\triangle DCA$ (c.g.c)

$\Rightarrow BC=DA$

$\Rightarrow BC:2=DA:2\Rightarrow BM=AM$

$\Rightarrow MBA$ cân tại $M\Rightarrow \widehat{MBA}=\widehat{MAB}$ 

Hay $\widehat{ABC}=\widehat{BAD}$

AH
Akai Haruma
Giáo viên
18 tháng 2 2024

Hình vẽ:

26 tháng 11 2015

Tự vẽ hình được ko? Mình ko làm được phần c đâu nhé!

a) Xét \(\Delta AMBvà\Delta CMDcó:\)

AM=MC

góc AMB=góc DMC

BM=MD

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Xét \(\Delta ADMvà\Delta BMCcó:\)

AM=MC

góc AMD=góc DMC

BM=MD

\(\Rightarrow\Delta ADM=\Delta CBM\left(c-g-c\right)\)

\(\Rightarrow\)góc DAM=góc BCM (cặp góc tương ứng)

Mà 2 góc này ở vị trí so le trong nên AD//BC

 

26 tháng 12 2017

A B C M D

*Xét ΔABM và ΔACM có:

\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BM=MC\left(M.l\text{à}.trung.\text{đ}i\text{ểm}.c\text{ủa}.BC\right)\\AM.c\text{ạnh}.chung\end{matrix}\right.\)

⇒ ΔABM = ΔACM (c - c - c)

*Vì ΔABM = ΔACM (cmt)

\(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) ⇒ \(\widehat{AMB}=\widehat{AMC}\) = \(\dfrac{180^o}{2}=90^o\) ⇒ AM ⊥ BC *Xét ΔAMB và ΔDMC có: \(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMB}=\widehat{DMC}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BM=MC\left(gt\right)\end{matrix}\right.\) ⇒ ΔAMB = ΔDMC (c - g - c) ⇒ \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng) Mà hai góc này ở vị trí so le trong ⇒ AB // CD
30 tháng 12 2016

đề sai rồi. Làm gì có tam giác ABA?

29 tháng 12 2017

Xét \(\Delta\)BMA và \(\Delta\)DMC:

có BM=MC (GT)

MA=MD(GT)

^BMA= ^DMC( đđ)

=> \(\Delta\)BMA = \(\Delta\)DMC (c-g-c)

=> ^B= ^BCD

Mà nó còn ở vị trí so le trong

=> BA // DC

Mà ta đã học định nghĩa nếu 2 đường thẳng cùng vuông góc với 1 đường thẳng thì song song ( ngược lại)

Và ta đã có AC \(\) vuông với AB ( ^A= \(90^0\))

~~~~Nên AC vuông góc với CD ( đpcm)~~~~

6 tháng 1 2020

a) ta có AB=AC

=> TAM GIÁC ABC CÂN TẠI A

=> B=C

XÉT TAM GIÁC ABM VÀ TAM GIÁC ACM CÓ

                         AB  =  AC(GT)

                          B   =  C (CMT)

                        BM=MC(M LÀ TRUNG ĐIỂM CỦA BC)

=> TAM GIÁC ABM = TAM GIÁC ACM (C-G-C)

6 tháng 1 2020

B) XÉT \(\Delta AMC\)VÀ \(\Delta EMB\)

\(BM=MC\left(GT\right)\)

\(\widehat{AMC}=\widehat{EMB}\)(ĐỐI ĐỈNH)

\(MA=ME\left(GT\right)\)

\(\Rightarrow\Delta AMC=\Delta EMB\left(C-G-C\right)\)

\(\Rightarrow\widehat{BEA}=\widehat{CAE}\)HAI GÓC TƯƠNG ỨNG

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

\(\Rightarrow AC//BE\)