K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Áp dụng t/c đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền được: AM=12BCAM=12BC (1)

Ta có: BM=CM=12BC(2)BM=CM=12BC(2)

Từ (1) và (2) AM=BM=CM⇒AM=BM=CM

mà AM=MDAM=MD=BM=CMAM=MD⇒AM=MD=BM=CM

ΔAMB⇒ΔAMB cân tại M và ΔCMDΔCMD cân tại M

Áp dụng t/c tổng 3 góc trong 1 t/g vào:

ΔAMBΔAMB có: ABMˆ=1800AMBˆ2(3)ABM^=1800−AMB^2(3)

ΔCMDΔCMD có: MCDˆ=180oCMDˆ2(4)MCD^=180o−CMD^2(4)

Từ (3) và (4) ABMˆ=MCDˆ(AMBˆ=CMDˆ)⇒ABM^=MCD^(AMB^=CMD^) đối đỉnh

mà 2 góc này ở vị trí so le trog nên ABAB // CD

Lại có: BACˆ+ACDˆ=180oBAC^+ACD^=180o (trong cùng phía)

ACDˆ=90o⇒ACD^=90o

Nối A với I.

Ta lại có: ACIˆ+EICˆ=180oACI^+EIC^=180o (trong cùng phía)

EICˆ=90o⇒EIC^=90o

Do CI=CAΔACICI=CA⇒ΔACI cân tại C

CIAˆ=45o⇒CIA^=45o (tổng 3 góc trog tg)

Khi đó: AIEˆ=45oAIE^=45o

CIAˆ=AIEˆ⇒CIA^=AIE^ hay DIAˆ=EIAˆDIA^=EIA^

Vì ACAC // EI CAIˆ+IAEˆ+AEIˆ=180o⇒CAI^+IAE^+AEI^=180o

45o+IAEˆ+AEIˆ=180o⇒45o+IAE^+AEI^=180o (7)

AB // CD CIAˆ+CADˆ+BADˆ=180o⇒CIA^+CAD^+BAD^=180o

45o+IADˆ+BADˆ=180o⇒45o+IAD^+BAD^=180o (8)

Lại do AC // EI HACˆ=AEIˆ⇒HAC^=AEI^ (đồng vị) (5)

Có: HACˆ+HCAˆ=90oHAC^+HCA^=90o

Bˆ+HCAˆ=90oB^+HCA^=90o

Khi đó: HACˆ=BˆHAC^=B^

mà Bˆ=MABˆB^=MAB^ (ΔAMBΔAMB cân tại M)

HACˆ=MABˆ⇒HAC^=MAB^ (6)

Từ (5) và (6) AEIˆ=MABˆ⇒AEI^=MAB^

hay BADˆ=AEIˆBAD^=AEI^ (9)

Từ (7); (8) và (9)  IAEˆ=IADˆIAE^=IAD^

Xét ΔAEIΔAEI và ΔADIΔADI có:

EIAˆ=DIAˆEIA^=DIA^ (c/m trên)

AI chung

IAEˆ=IADˆIAE^=IAD^ (c/m trên)

ΔAEI=ΔADI(g.c.g)⇒ΔAEI=ΔADI(g.c.g)

AE=AD⇒AE=AD (*)

mà AM = MD = BM = CM (c/m trên)

AM+MD=BM+CM⇒AM+MD=BM+CM

AD=BC⇒AD=BC (**)

Từ (*) và (**) AE=BC⇒AE=BCđpcm.→đpcm.

Bài này hay ghê!

12 tháng 12 2017

đề bài sai, Ko vẽ được hình nào như đề bài yêu cầu

12 tháng 12 2017

Cám ơn bn.. mk vẽ quài cx k ra luôn 

13 tháng 12 2020

a) Xét ΔACM và ΔBMN có 

AM=BM(M là trung điểm của AB)

\(\widehat{AMC}=\widehat{BMN}\)(hai góc đối đỉnh)

CM=MN(gt)

Do đó: ΔAMC=ΔBMN(c-g-c)

b) Ta có: ΔAMC=ΔBMN(cmt)

nên \(\widehat{CAM}=\widehat{NBM}\)(hai góc tương ứng)

mà \(\widehat{CAM}=90^0\)(\(\widehat{BAC}=90^0\), M∈AB)

nên \(\widehat{NBM}=90^0\)

\(\widehat{NBA}=90^0\)

hay NB⊥AB(đpcm)

c) Xét ΔAMN và ΔBMC có

MA=MB(M là trung điểm của AB)

\(\widehat{AMN}=\widehat{BMC}\)(hai góc đối đỉnh)

MN=MC(gt)

Do đó: ΔAMN=ΔBMC(c-g-c)

⇒AN=BC(hai cạnh tương ứng) và \(\widehat{NAM}=\widehat{CBM}\)(hai góc tương ứng)

mà \(\widehat{NAM}\) và \(\widehat{CBM}\) là hai góc ở vị trí so le trong

nên AN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

13 tháng 12 2020

Giúp tôi với

4 tháng 2 2018

Ap dụng định lý  Pytago  vào tam giác vuông  \(ABC\)ta có:

             \(AB^2+AC^2=BC^2\)

     \(\Leftrightarrow\)\(BC^2=3^2+4^2=25\)

     \(\Leftrightarrow\)\(BC=\sqrt{25}=5\)

1:

a: Xét ΔABD vuông tại D và ΔCAE vuông tại E có

AB=CA
góc ABD=góc CAE

=>ΔABD=ΔCAE

b: ΔABD=ΔCAE

=>BD=AE: AD=CE

=>BD-CE=BD-AD=DE

Bài 1 :Trên cùng nửa mặt phẳng có chứa đoạn AB ,kẻ tia Mx sao cho góc AMx = 60 độ và tia My sao cho góc BMy = 60 độ . Trên Mx lấy điểm C sao cho MC = MA . Trên tia My lấy điểm D sao cho MD=MBa)Chứng minh AD=CBb)Lấy điểm E là trung điểm của AD . F là trung điểm của CB . Chứng minh EMF = 60 độBài 2 : C thuộc MN . Ix là đường trung trực của đoạn MC ( I thuộc MC), KI là đường trung trực của đoạn CN ( K...
Đọc tiếp

Bài 1 :Trên cùng nửa mặt phẳng có chứa đoạn AB ,kẻ tia Mx sao cho góc AMx = 60 độ và tia My sao cho góc BMy = 60 độ . Trên Mx lấy điểm C sao cho MC = MA . Trên tia My lấy điểm D sao cho MD=MB

a)Chứng minh AD=CB

b)Lấy điểm E là trung điểm của AD . F là trung điểm của CB . Chứng minh EMF = 60 độ

Bài 2 : C thuộc MN . Ix là đường trung trực của đoạn MC ( I thuộc MC), KI là đường trung trực của đoạn CN ( K thuộc CN) .Kẻ đường thẳng d đi qua C cắt Ix tại E và cắt KI tại F . Chứng minh ME//MF

Bài 3 :Cho tam giác ABC ( góc A < 90 độ ) . TẠi A kẻ Ã vuông góc với AC , M thuộc Ax sao cho AM=AC . M,B thuộc 2 nửa mặt phẳng đối nhau bờ AC . Tại A kẻ Ay vuông góc với AB , n thuộc Ay sao cho AN = AB ( N,C thuộc 2 nửa mặt phẳng đối nhau bờ AB )

a) chứng minh tam giác ABM = tam giác ANC

b) BM=CN

c) Bm vuông góc với CN

BÀI 4 Tam giác ABC , M là trung điểm của AB , N là trung điểm của AC . Trên tia đối của tia MN lấy điểm P sao cho NP = MN

a) tam giác AMN = tam giác CPN

b) CP = BM

c) MN//BC

d) nhận sét gì về MN so với BC

BÀi 5 cho tam giác ABC . từ C kẻ CX // với AB . Trên cạnh Ab lấy điểm M . Trên tia Cx lấy điểm N sao cho AM=CN. Nối MN cắt AC tại D

a) chứng minh OA=OC , OM =ON

b) Nối BO tia BO cắt Cx tại P . Chứng minh AB = CD

Các bạn giải được bài nào thì giải bài đấy cho mình nhé , mình cần gấp lắm rùi . Thank nha

1
9 tháng 12 2015

đừng có ns lung tung bọn mik muốn làm đó

20 tháng 5 2021

\(a)\)

\(\text{Ta có}:\)

\(\Delta ABC\)\(\text{vuông tại}\)\(A\)

\(\rightarrow BC^2=AB^2+AC^2\)

\(\rightarrow AC^2=BC^2-AB^2\)

\(\rightarrow AC^2=15^2-9^2\)

\(\rightarrow AC^2=144\)

\(\rightarrow AC=12\)

\(\rightarrow AB< AC< BC\)

\(\rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)

\(\text{Ta có:}\)

\(AB\perp AC\rightarrow\widehat{BAC}=\widehat{EAC}\)

\(\rightarrow AB=AE\rightarrow A\)\(\text{là trung điểm}\)\(BE\)

\(b)\)

\(\text{Theo phần a), ta có:}\)\(AB=AE\rightarrow A\text{ }\)\(\text{là trung điểm}\)\(BE\)
\(\rightarrow CA\)\(\text{là trung tuyến}\)\(\Delta CBE\)

\(\text{Mà}\)\(BH\)\(\text{là trung tuyến}\)\(\Delta BCE\)\(,\)\(BH\text{∩}\text{ }CA=M\)

\(\rightarrow M\text{ }\)\(\text{là trọng tâm}\)\(\Delta BCE\)

\(\rightarrow CM=\frac{2}{3}CA\)

\(\rightarrow CM=8\)

\(c)\)

\(\text{Theo phần a)}\)\(\rightarrow\widehat{ECA}=\widehat{ACB}\)

                         \(\rightarrow\widehat{CEA}=\widehat{CBA}\)

\(\text{Do}\)\(AK//CE\rightarrow\widehat{KAB}=\widehat{AEC}=\widehat{CBA}=\widehat{KBA}\rightarrow KB=KA\)

         \(\widehat{KAC}=\widehat{ECA}=\widehat{ACB}=\widehat{ACK}\rightarrow KA=KC\)

         \(\rightarrow KB=KC\rightarrow K\)\(\text{là trung điểm}\)\(BC\)

\(\text{Mà}\)\(M\)\(\text{là trọng tâm}\)\(\Delta CBE\rightarrow E,MK\)\(\text{thẳng hàng}\)

20 tháng 5 2021

C B A H K M E

10 tháng 1 2018

gọi F là giao của CE với MN

ta có góc ECA= góc FCM ( vì đối đỉnh)

góc EAC= góc FMC = 90 độ

AC=CM

=> tam giác EAC= tam giác FMC => EA=FM mà EA = 1/2 BA ( vì E là trung điểm AB)=> FM = 1/2 AB

do tam giác NMC= tam giác BAC => BA= MN

=> FM=1/2 MN => F là trung điểm của MN => EC đi qua trung điểm MN