K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

a)  IM // AC, AB \(\perp AC\)

\(\Rightarrow\)IM \(\perp AB\)  \(\Rightarrow\)\(\widehat{AMI}=90^0\)

IN // AB,  AB \(\perp AC\)

\(\Rightarrow\)IN \(\perp AC\)    \(\Rightarrow\)\(\widehat{ANI}=90^0\)

Tứ giác  AMIN  có:  \(\widehat{AMI}=\widehat{MAN}=\widehat{ANI}=90^0\)

nên  AMIN  là hình chữ nhật

b)  Hình chữ nhật  AMIN là hình vuông 

\(\Leftrightarrow\)AI  là phân giác  \(\widehat{BAC}\)

mà  AI  đồng thời la trung tuyến của  \(\Delta ABC\)

\(\Rightarrow\)\(\Delta ABC\)vuông cân tại  A

31 tháng 12 2017

bạn ơi. giải dc câu c ko ạ

31 tháng 12 2017

Hỏi đáp Toán
a)
Tứ giác AMIN có:
IM // AN (IM // AC, N \(\in\) AC)
IN // AM (IN // AB, M \(\in\) AB)
\(\Rightarrow\) AMIN là hình bình hành
\(\widehat{A}=90^o\)
\(\Rightarrow\) AMIN là hình chữ nhật.

b) Kẻ đoạn thẳng AI.
Để AMIN là hình vuông thì \(\widehat{A_1}=\widehat{A_2}\)
\(\Rightarrow\) AI là tia phân giác của \(\widehat{A}\).
Lại có: AI là đường trung tuyến của \(\Delta ABC\).
\(\Rightarrow\) \(\Delta ABC\) cân tại A.
Vậy để tứ giác AMIN là hình vuông thì \(\Delta ABC\) cần thêm điều kiện cân tại A.

c) Kẻ đoạn thẳng MN. Gọi giao điểm của MN và AI là K.
\(\Delta AIF\) có:
KA = KI (AMIN là hình chữ nhật)
NI = NF (gt)
\(\Rightarrow\) KN là đường trung bình của \(\Delta AIF\).
\(\Rightarrow\) KN // AF (1)
Tương tự với \(\Delta AIE\), ta có: KM là đường trung bình của \(\Delta AIE\)
\(\Rightarrow\) KM // AE (2)
Lại có: M, K, N thẳng hàng (K là trung điểm của MN) (3)
Từ (1), (2) và (3) \(\Rightarrow\) ba điểm E, A, F thẳng hàng (đpcm).

20 tháng 12 2018

A B C I N O

20 tháng 12 2018

a) Ta có:

\(IN//AC\left(gt\right)\)

\(AC\perp AB\left(\widehat{A}=90^o\right)\)

\(\Rightarrow IN\perp AB\)\(hay\)\(\widehat{ANI}=90^o\)

\(Cmtt:IM//AB\left(gt\right)\)

\(AB\perp AC\left(\widehat{A}=90^o\right)\)

\(\Rightarrow IN\perp AC\)\(hay\)\(\widehat{AMI}=90^o\)

Xét tứ giác AMIN có:

\(\widehat{A}=\widehat{ANI}=\widehat{AMI}=90^o\)

Do đó tứ giác AMIN là hình chữ nhật

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

a: Xét tứ giác AKMN có 

MN//AK

AN//MK

Do đó: AKMN là hình bình hành

mà \(\widehat{NAK}=90^0\)

nên AKMN là hình chữ nhật

b: Xét ΔAMQ có 

AN là đường cao

AN là đường trung tuyến

Do đó: ΔAMQ cân tại A

mà AN là đường cao

nên AN là tia phân giác của góc MAQ(1)

Xét ΔAME có 

AK là đường cao

AK là đường trung tuyến

DO đó: ΔAME cân tại A

mà AK là đường cao

nên AK là tia phân giác của góc MAE(2)

Từ (1) và (2) suy ra \(\widehat{QAE}=2\cdot\left(\widehat{MAN}+\widehat{MAK}\right)=2\cdot90^0=180^0\)

hay Q,E,A thẳng hàng