Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
B A C H D E K M
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
cho tam giác abc vuông tại a .đường phân giác bd .qua d kẻ dường thẳng vương góc với bc tại e đường thẳng này cắt tia BA tại K .tia BD cắt tại CK tại f
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
a) tam giác ABC vuông tại A
=> AB2 + AC2 = BC2 (định lý py-ta-go)
=> 92 + AC2 = 152
=> AC2 = 225 - 81
=> AC2 = 144 => AC = \(\sqrt{144}=12cm\)
t i c k đúng nhé
a) trong tam giác ABC có: AB < AC < BC ( 9 < 12 < 15)
=> góc C < góc B < góc A (định lý)
a) Vì ^ABC = 50\(^o\)và BE là phân giác ^ABC
=> ^ABE = ^ABC : 2= 50\(^o\):2 = 25\(^o\)
Xét \(\Delta\)ABE có: ^BEC là góc ngoài tại đỉnh B
=> ^BEC = ^ABE + ^BAE = 25\(^o\)+90\(^o\)=115\(^o\)
b) Xét \(\Delta\)ABE và \(\Delta\)DBE có:
^ABE = ^DBE ( BE là phân giác ^ABC)
BE chung
BA = BE
=> \(\Delta\)ABE = \(\Delta\)DBE
=> ^BDE = ^BAE = 90\(^o\)
=> DE vuông BC
c) Sai đề rồi nhé em kiểm tra lại đề bài.
c) Xét \(\Delta\)BFH và \(\Delta\)BCH có:
^BHF = ^BHC ( = 90\(^o\))
BH chung
^FBH = ^CBH ( BE là phân giác ^B)
=> \(\Delta\)BFH = \(\Delta\)BCH ( g.c.g)
=> CB = FB (1)
Xét \(\Delta\)BFD và \(\Delta\)BCA có:
BF = BC ( theo 1)
^B chung
BA = BD ( giả thiết )
=> \(\Delta\)BFD = \(\Delta\)BCA ( c.g.c)
=> ^BDF = ^BAC = 90 \(^o\)
=> FD vuông BC mà ED vuông BC
=> F; E; D thẳng hàng