Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB=2AC
AB^2/AC^2=BH/HC
=>BH/HC=2^2=4
=>BH=4HC
AH^2=HB*HC
=>4HC^2=a^2
=>HC=a/2
=>BH=4*a/2=2a
BC=2a+a/2=5/2*a
\(AB=\sqrt{2a\cdot\dfrac{5}{2}a}=a\sqrt{5}\)
\(AC=\sqrt{2a\cdot\dfrac{1}{2}a}=a\)
b: AM=BC/2=5/4a
MH=căn AM^2-AH^2=căn (5/4a)^2-a^2=3/4a
1
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)
Theo pytago xét tam giác ABC vuông tại A có:
\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)
Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)
2
\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)
Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:
\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)
3
`BC=HB+HC=36+64=100`
Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):
\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)
\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)
A B C K N 5 12
Mik gọi như này nhé, từ trung điểm M của BC, kẻ vuông góc với BC cắt AC tại N và AB tại K.
Bài làm
a) Xét tam giác ABC vuông tại A có:
\(BC=\sqrt{AB^2+AC^2}\)
hay \(BC=\sqrt{5^2+12^2}=\sqrt{25+144}\)
=> \(BC=\sqrt{169}=13\left(cm\right)\)
=> \(BM=MC=\frac{BC}{2}=\frac{13}{2}=6,5\left(cm\right)\)
Xét tam giác ABC và tam giác MNC có:
\(\widehat{BAC}=\widehat{NMC}=90^0\)
\(\widehat{C}\)chung
=> Tam giác ABC ~ tam giác MNC ( g-g )
=> \(\frac{AB}{MN}=\frac{AC}{MC}\)
hay \(\frac{5}{MN}=\frac{12}{6,5}\Rightarrow MN=\frac{65}{24}\left(cm\right)\)
b) Xét tam giác ABC vuông tại A
Đường cao AH
=> \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
hay \(\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{12^2}\)
=> \(\frac{1}{AH^2}=\frac{1}{25}+\frac{1}{144}\)
=> \(\frac{1}{AH^2}=\frac{169}{3600}\)
=> \(AH^2=\frac{3600}{169}\)
=> \(AH=\sqrt{\frac{3600}{169}}=\frac{60}{13}\)( cm )
Xét tam giác AHB vuông tại H có:
Theo Pytago có:
\(BH^2=AB^2-AH^2\)
hay \(BH^2=5^2-\frac{3600}{169}\)
=> \(BH^2=25-\frac{3600}{169}\)
=>\(BH^2=\frac{625}{169}\)
=> \(BH=\frac{25}{13}\)( cm )
Ta có: BH + HC = BC
hay \(\frac{25}{13}+HC=13\)
=> \(HC=13-\frac{25}{13}\)
=> \(HC=\frac{144}{13}\)
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AH^2=HB\cdot HC\\AC^2=CH\cdot BC\\AB^2=BH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=2\sqrt{6}\left(cm\right)\\AC=2\sqrt{15}\left(cm\right)\\AB=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)
a) Nối \(A,M.\) Vì \(AH\perp BC,MD\perp AC\to A,H,M,D\) cùng nằm trên đường tròn đường kính \(AM\). Suy ra \(\angle MDH=\angle MAH\) (hai góc nội tiếp cùng chắn một cung). Do \(B,M\) đối xứng nhau qua điểm \(H\) nên
\(\angle MAH=\angle BAH\to\angle MAH=\angle ACB\to\angle MDH=\angle ACB.\)
Do \(O\) là trung điểm \(MC\), nên áp dụng tính chất đường trung tuyến ứng với cạnh huyền trong tam giác vuông \(MCD\), ta được \(\Delta OCD\) cân, suy ra \(\angle ODC=\angle OCD\to\angle ODC=\angle MDH.\) Mà \(\angle ODC+\angle ODM=90^{\circ}\to\angle ODH=90^{\circ}.\) Vậy tam giác \(HDO\) vuông ở \(D.\)
b) Kẻ đường cao \(DK\) của tam giác \(HDO,K\in BC.\) Ta có \(OH=OM+HM=\frac{1}{2}BM+\frac{1}{2}CM=\frac{1}{2}BC.\) Do đó diện tích tam giác \(HDO\) lớn nhất khi và chỉ khi \(DK\) lớn nhất. Gọi \(J\) là trung điểm của \(OH\to DK\le DJ=\frac{1}{2}OH=\frac{1}{4}BC.\) Vậy \(DK\) lớn nhất khi \(K\equiv J\Leftrightarrow\Delta HDO\) vuông cân ở \(D.\) Khi đó \(\angle MAC=45^{\circ}\) (Vì bằng \(\angle DHC,\) góc nội tiếp cùng chắn 1 cung). Suy ra
\(\angle BAM=45^{\circ}\to\angle ABC=67,5^{\circ}\to\angle ACB=22,5^{\circ}.\)
Lấy \(I\) là trung điểm \(BC\to AI=\frac{1}{2}BC=a,\angle AIB=2\angle ACB=45^{\circ}.\) Suy ra \(AH=AI\cdot\sin\angle AIB=a\cdot\sin45^{\circ}=\frac{a\sqrt{2}}{2}.\)
Vậy để diện tích \(HDO\) lớn nhất thì \(AH=\frac{a\sqrt{2}}{2}.\)