K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

kho the ai ma lam noi

câu 1: cho tam giác abc vuông tại a . kẻ đường cao ah . gọi de là hình chiếu của h trên ab, ac và m , n theo thứ tự là tđ của các đoạn thẳng bh , cha)ah=deb)mden là hình thang vuôngc)gọi p là giao đường thẳng de với đường cao ah và q là tđ của đoạn thẳng mn . cm pq vuông ded) p là trực tâm tam giác abncâu 2:cho tam giác abc vuông tại a , đường cao ah . kẻ he vuông ab , hf vuông aca)ef=ahb) m , n lần lượt...
Đọc tiếp

câu 1: cho tam giác abc vuông tại a . kẻ đường cao ah . gọi de là hình chiếu của h trên ab, ac và m , n theo thứ tự là tđ của các đoạn thẳng bh , ch

a)ah=de

b)mden là hình thang vuông

c)gọi p là giao đường thẳng de với đường cao ah và q là tđ của đoạn thẳng mn . cm pq vuông de

d) p là trực tâm tam giác abn

câu 2:cho tam giác abc vuông tại a , đường cao ah . kẻ he vuông ab , hf vuông ac

a)ef=ah

b) m , n lần lượt là tđ hb , hc . cm Smefn=\(\frac{1}{2}\)Sabc

c) mnfe là hình gì ?

câu 3: cho tam giác abc vuông tại a , ab=6cm , ac=8cm ,đường cao ah. kẻ he vuông ab , hf vuông ac

a)ef=ah

b) tính ah

c)m , n theo thứ tự là tđ của các đoạn thẳng hb , hc. mnfe là hình gì ?

bài 4:cho tam giác abc vuông tại a, đường cao ah. gọi m là điểm nằm giữa b và c . kẻ mn vuông ab, mp vuông ac

a) cm ah.bc=ab.ac

b)anmp là hình gì ?

c)tính số đo góc nhp

d)tìm vị trí điểm m trên bc để np có độ dài ngắn nhất

bài5:cho tam giác abc vuông tại a, đường cao ah. d là tđ ac, e đối xứng với h qua d

a) ahce là hình chữ nhật

b)kẻ ai // he(i thuộc bc).cm aehi là hbh
c)trên tia đối ha lấy k sao cho ha=hk.cm caik là hình thoi

d) tam giác abc cần đk gì để caik là hình vuông ? khi đó ahce là hình gì ?

 

 

0
7 tháng 9 2020

A B C D K E F H

a, ABCD là hình thang (gt) => AB // CD (đn)

=> OA/OC = OB/OD (talet)                                          (1)

có AF // BC (gt) => FO/OB = AO/OC (talet) ; có BE // AD (gt) => OE/OA = OB/OD (talet) và (1)

=> FO/OB = OE/OA ; xét tg AOB 

=> FE // AB (talet đảo)

b, có DA // BE (Gt) ; ^DAO slt ^OEB ; ^ADO slt ^OBE 

=> ^DAO = ^OEB và ^ADO = ^OBE (đl)

xét tg ADO và tg EBO 

=> tg ADO đồng dạng với tg EBO (g-g)

=> AO/OE = DO/OB                  (2)

+ AB // FE (câu a) => AO/OE = AB/EF (talet) ; có AB // DC (Câu a) => DO/OB = CD/AB (talet) và (2)

=> AB/EF = CD/AB 

=> AB^2  = EF.CD 

c, kẻ AH _|_ BD ; CK _|_ BD

có S1 = OB.AH/2 ; S2 = OD.CK/2  => S1.S2 = OB.AH.OD.CK/4

CÓ S3 = AH.DO/2 ; S4 = CK.OB/2 => C3.C4 = OB.AH.OD.CK/4

=> S1.S2 = S3.S4