K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 12 2020

\(\left\{{}\begin{matrix}\widehat{DCA}=\widehat{HCA}\\\widehat{DCA}+\widehat{DAC}=90^0\\\widehat{HCA}+\widehat{HBA}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{HBA}=\widehat{DAC}\)

\(\left\{{}\begin{matrix}\widehat{DAC}+\widehat{BAE}=90^0\\\widehat{HBA}+\widehat{HAB}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{BAE}=\widehat{HAB}\)

Có \(\left\{{}\begin{matrix}AH=AE=R\\\widehat{BAE}=\widehat{HAB}\\\text{AB chung}\end{matrix}\right.\)  \(\Rightarrow\Delta AHB=\Delta AEB\)

\(\Rightarrow\widehat{E}=\widehat{H}=90^0\Rightarrow BE\) là tiếp tuyến

21 tháng 12 2020

Cách chứng minh ^BAE=^HAB khó nghĩ thật ạ.

a) E nằm trên đường tròn đường kính CD

=> Tam giác CDE vuông tại E

=> DE // AB

Gọi M là trung điểm của AE

HM là đường trung bình của hình thang ABDE

=> HM // AB => \(HM\perp AB\)

=> Tam giác AHE cân tại H => \(\widehat{AEH}=\widehat{EAH}\)

Tam giác COE cân tại O => \(\widehat{OEC}=\widehat{OCE}\)

=> \(\widehat{OEC}+\widehat{AEH}=\widehat{OCE}+\widehat{EAH}=90^o\)

=> \(HE\perp OE\)=> Đpcm 

b) Tam giác ABC vuông tại A 

=> \(BC^2=AB^2+AC^2=289\)

=> BC = 17 

Tam giác ABC vuông tại A, đường cao AH

=> AB . AC = AH . BC 

=> \(HE=AH=\frac{120}{17}\)

18 tháng 9 2017

De lam trong sach bai tap co het do ban