K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2022

a) Áp dụng hệ thức giữa cạnh và đường cao vào tam giác ABC vuông tại A , đường cao AH , ta có : 

\(BH.HC=AH^2\left(1\right)\)

Áp dụng hệ thức giữa cạnh và đường cao vào tam giác AHB vuông tại H , đường cao HK , ta có : 

\(AH^2=AB.AK\left(2\right)\)

Từ ( 1 ) và ( 2 ) \(\Rightarrow AB.AK=BH.HC\) ( ĐPCM )

b) Áp dụng hệ thức giữa cạnh và đường cao vào tam giác ABC vuông tại A , đường cao AH , ta có : 

\(\left\{{}\begin{matrix}AB^2=BH.BC\\AC^2=CH.BC\end{matrix}\right.\)

\(\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}=\dfrac{HB}{HC}\) ( đpcm )

16 tháng 6 2016

a) ta có theo công thức lượng giác : 

xét trong tam giác vuông AHB ta có AK.AB=AH2

mặt khác trong tam giác vuông ABC có : AH2=HC.HB 

=> AK.AB=HB.HC (=AH2)

 

16 tháng 6 2016

a) tam giác AKH vuông tại K và tam giác AHB vuông tại H có

góc KAH =góc HAB 

=> tam giác AKH đồng dạng tam giác AHB (g-g)

=> AK/AH=AH/AB

=> AH^2=AK.AB (1)

tam giác ABC vuông tại A=> AH^2=BH.CH (hệ thức lượng tam giác vuông )

(1),(2)=> AK.AB=BH.CH (đpcm)

b) đề sai bn nhé phải là cm AB^2/AC^2=HB/HC 

ta có AB^2=BH.BC (hệ thức lượng tam giác vuông )

ta có AC^2=HC.BC (hệ thức lượng tam giác vuông )

=> \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.BC}=\frac{BH}{CH}\left(đpcm\right)\)

18 tháng 8 2020

a)

Liên tiếp áp dụng HTL, ta có:   \(\hept{\begin{cases}AB.AK=AH^2\\HB.HC=AH^2\end{cases}}\)   

=>   \(AB.AK=HB.HC\)

=> TA CÓ ĐPCM.

b) LIÊN TIẾP ÁP DỤNG HTL TA ĐƯỢC: 

\(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.CB\end{cases}}\)

CÓ:   \(\frac{AB^2}{AC^2}=\frac{BH.BC}{CH.CB}=\frac{HB}{HC}\)

VẬY TA CÓ ĐPCM.

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)