K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2015

1. Xét tam giác vuông ABD và EBD có:

góc ABD = góc EBD ( BD là tia phân giác của góc ABC)

BD là cạnh chung

=> tam giác ABD = tam giác EBD ( cạnh huyền - góc nhọn)

2. Ta có AD=DE ( vì tam giác ABD = EBD)  ( 1 )

Trong tam giác vuông DEC có DC là cạnh huyền 

=> DE < DC  ( 2 )

Từ  (1) và (2) 

=> AD<DC

3. xét hai tam giác vuông ADN và EDC có:

AD=DE (cmt)

góc ADN= EDC ( đối đỉnh)

=> tam giác ADN=EDC (cạnh góc vuông - góc nhọn kề)

=> AN=EC ( 2 cạnh tương ứng)

Ta có BA=BE ; AN=EC

=> BA+AN=BE+EC

<=> BN=BC

=> Tam giác BCN cân 

Mà BD là tia phân giác

=> BD là đường trung trực ( ứng với cạnh NC)

Ta có: MN=MC

=> M thuộc đường trung trực ứng với NC

<=> M thuộc BD

=> B, D, M thẳng hàng

 

 

11 tháng 2 2021

Đáp án:

A) Xét ΔABD và ΔEBD có:

+) AB=BE (gt)

+) góc ABD= góc EBD (do BD là phân giác góc B)

+) BD chung

=> ΔABD = ΔEBD (c-g-c)

b)

Qua C kẻ đường thẳng vuông góc với BD tại H.

Xét ΔBCF có: BH là đường cao đồng thời là phân giác của góc B

=> ΔBCF cân tại B (tính chất)

=> BC= BF (điều phải chứng minh)

c)

Xét ΔABC và ΔEBF có:

+) AB = EB (gt)

+) góc B chung

+) BC= BF (câu b)

=> ΔABC = ΔEBF (c-g-c)

d)

Từ ý a, ΔABD = ΔEBD (c-g-c)

=> góc BAD= góc BED = 90

=> DE ⊥ BC

Xét ΔBCF có: BH và CA là 2 đường cao cắt nhau tại D

=> D là trực tâm

=> FD ⊥ BC 

=> DE trùng với FD

=> D,E,F thẳng hàng

image