K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2016

a)  Mk bít làm mỗi phần a thui à

.Vì tam giác ABC vuông tại A

=> AB+ AC=BC

+) AB =6 cm

+) AC = 8 cm

=> 6+ 82 = BC

=> 36 + 64 = BC

=> 100 = BC2

=> BC= \(\sqrt{100}\) = 10 (cm)

Vậy BC = 10 cm

10 tháng 5 2015

mình viết thêm nha !

=> tam giác BKC cân tại B

=> BO là trung trực ứng với cạnh CK

=>BI là trung trực của CK (đpcm)

28 tháng 4 2015

Bạn vẽ hình ra nhé,rồi xem cách giải của mình:
a) Xét tam giác ABC ta có : \(BC^2=AB^2+AC^2\)( Định lí Pytago)
                                  =>\(BC^2\) =\(6^2-8^2\)=100
                                  => BC = \(\sqrt{100}\) =10cm
b)Xét tam giác vuông BAI và tam giác vuông BHI, ta có:
                   BI là cạnh huyền chung
                   Góc ABI= Góc HBI (gt)
            => tam giác BAI = tam giác BHI (ch-gn)
          => AB=BH (2 cạnh tương ứng )(1)
Xét tam giác AIK và tam giác HIK, ta có:
               AI=HI (2 cạnh tương ứng của tam giác BAI = BHI)
              Góc AIK= Góc HIC( 2 góc đối đỉnh)
             Góc IAK = IHC (g-c-g)
              => AK= HC( 2 cạnh tương ứng ) (2)
Từ (1) và (2), ta => AB+AK=BH+HC
                       => BK=BC
c)Vẽ IN ll BC => IN vuông góc KH 
  Vẽ IM ll AB => IM vuông góc IC
Ta có : tam giác BNI = Tam giác IMB (g-c-g)
=> IN=BM(2 cạnh tương ứng)
Xét tam giác BNI : IB<IN+BN( BĐT tam giác )
                    hay  IB<BN+BM (1)
Xét tam giác vuông NIK : IK<NK( cạnh góc vuông < cạnh huyền)(2)
Xét tam giác vuông MIC : IC<MC(cạnh góc vuông< cạnh huyền)(3)
Từ (1),(2),(3). Cộng theo vế, ta có :
IB+IK+IC<BN+NK+BM+MC
IB+IK+IC<BK+BC
IB+IK+IC<2BC
IB+IK+IK<2.10=20cm ( đpcm)

             
 

21 tháng 4 2015

K là giao điểm của BI là đường trung trực của AB và IH??

6 tháng 5 2016

a/ \(\Delta\)ABC vuông tại A: \(BC^2\)=\(AB^2\)+\(AC^2\)(Pytago)

\(\Rightarrow\)\(BC^2\)=\(6^2+8^2\)=100

\(\Rightarrow\)BC=10 cm

b/ Xét \(\Delta\)ABI và \(\Delta\)HBI

^ABI=^HBI(phân giác BI)

^BAI=^BHI(=90 độ)

BI (chung)

\(\Rightarrow\)\(\Delta\)ABI=\(\Delta\)HBI(cạnh huyền-góc nhọn)

c/ BA=BH(cặp cạnh tương ứng)

\(\Rightarrow\)\(\varepsilon\)đường trung trực của AH(1)

IA=IH(cặp cạnh tương ứng)

\(\Rightarrow\)\(\varepsilon\)đường trung trực của AH(2)

từ (1)và(2)

\(\Rightarrow\)BI là đường trung trực của AH

d/ \(\Delta\)vuông HIC:

HI<IC(cạnh góc vuông<cạnh huyền)

mà HI=IA(cặp cạnh tương ứng)

\(\Rightarrow\)IA<IC