K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

a, ta có Bx // AC

=> góc BNM =góc MAC( so le trong )

xét tam giác BMN và CMA ,có :

góc BMN =góc CMA (đối đỉnh )

góc BNM =góc MAC (chứng minh trên)

=>tam giác BMN =tam giác CMA

b, do 2tam giác AMC =NMB( theo câu a)

=>\(\dfrac{BA}{AC}\)=\(\dfrac{MN}{AM}\)(1)

TA CÓ :AN là tia pg góc BÁC =>góc BAM = góc MAC

mà góc BNM = góc MAC ( chứng minh trên )

=>góc BNM = góc BAM

=>tam giác BAN cân tại B

=>BN =BA =>\(\dfrac{BA}{AC}\)= \(\dfrac{BN}{AC}\)(2)

Từ (1) và (2) =>\(\dfrac{BA}{AC}\)= \(\dfrac{MN}{AM}\)(ĐPCM)

c, ta có BN //AC

mà NP vuông góc với AC

=>BN vuông góc với NP

Xét tứ giác ABNP có 3 góc BNP=NPA =PAB=900

=>ABNP là hcn

mà hcn ABNP có BN =AB (vì tam giác ABN cân tại B)

=>ABNP là hình vuông =>BN =NP =AP=AB=6

Ta có :AP+PC =AC =>PC =8-6=2

xét tam giác PIC có PC //BN (do ac//bn)

=>\(\dfrac{BN}{PC}\)=\(\dfrac{NI}{IP}\)=\(\dfrac{BI}{IC}\)( theo hệ quả của định lí TA -LET)(3)

=>\(\dfrac{IN}{IP}\)=\(\dfrac{6}{2}\) =>\(\dfrac{NI}{NP-NI}\) =\(\dfrac{6}{2}\)=> 6(NP-NI)=2NI=>36-6NI=2NI

=>36=2NI+6NI => 36=8MI =>NI=4,5

ta có NP=NI+IP =>PI=6-4,5=1,5

Áp dụng định lí Py -ta go vào tam giác BIN

=> BI2=BN2+NI2=>BI2=62+4,52=56,25 =>BÍ=7,5

Ta có \(\dfrac{BI}{IC}\)=\(\dfrac{BN}{PC}\)=>\(\dfrac{BI}{IC}\)=\(\dfrac{6}{2}\) =>IC =\(\dfrac{BI.2}{6}\)=>IC=2,5

Vậy IC=2,5 ;BI=7,5 ; NI=4,5 ;IP=1,5

1 tháng 4 2019

Câu c hình như sai r

a: BC=căn 6^2+8^2=10cm

AM là phân giác

=>MB/AB=MC/AC

=>MB/3=MC/4=10/7

=>MB=30/7cm; MC=40/7cm

b: Xét ΔAMC và ΔNMB có

góc MAC=góc MNB

góc AMC=góc NMB

=>ΔAMC đồng dạng với ΔNMB

 

a) Xét ΔBMN và ΔCMA có 

\(\widehat{MBN}=\widehat{MCA}\)(hai góc so le trong, AC//NB)

\(\widehat{BMN}=\widehat{CMA}\)(hai góc đối đỉnh)

Do đó: ΔBMN∼ΔCMA(g-g)

b) Ta có: ΔBMN∼ΔCMA(cmt)

nên \(\dfrac{MN}{MA}=\dfrac{MB}{MC}\)(Các cặp cạnh tương ứng tỉ lệ)(1)

Xét ΔABC có AM là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{AC}=\dfrac{BM}{CM}\)(Tính chất đường phân giác của tam giác)(2)

Từ (1) và (2) suy ra \(\dfrac{AB}{AC}=\dfrac{MN}{MA}\)(đpcm)

16 tháng 5 2022

 ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-;  ;-; 

16 tháng 5 2022

d

8 tháng 5 2017

Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng i: Đoạn thẳng [B, A] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng n: Đoạn thẳng [B, D] Đoạn thẳng p: Đoạn thẳng [C, E] Đoạn thẳng q: Đoạn thẳng [D, E] Đoạn thẳng r: Đoạn thẳng [D, M] Đoạn thẳng s: Đoạn thẳng [M, E] Đoạn thẳng a: Đoạn thẳng [A, H] A = (-0.88, 1.82) A = (-0.88, 1.82) A = (-0.88, 1.82) C = (8.6, 1.86) C = (8.6, 1.86) C = (8.6, 1.86) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h

a. Ta thấy \(\widehat{DAB}=\widehat{MAC}\) (Cùng phụ với góc \(\widehat{BAM}\)); \(\widehat{DBA}=\widehat{MCA}\)(Cùng phụ với góc \(\widehat{ABM}\))

Vậy nên \(\Delta CAM\sim\Delta BAD\left(g-g\right)\)

b. Do \(\Delta CAM\sim\Delta BAD\left(cma\right)\Rightarrow\frac{AM}{AD}=\frac{AC}{AB}\Rightarrow\frac{AM}{AC}=\frac{AD}{AB}\)

Mà \(\widehat{DAM}=\widehat{BAC}=90^o\Rightarrow\Delta ADM\sim\Delta ABC\left(c-g-c\right)\)

c. Ta thấy \(\widehat{ABM}=\widehat{ACE}\) (Cùng phụ với góc \(\widehat{ACM}\)); \(\widehat{BAM}=\widehat{CAE}\)(Cùng phụ với góc \(\widehat{MAC}\))

Vậy nên \(\Delta BAM\sim\Delta CAE\left(g-g\right)\Rightarrow\frac{AE}{AM}=\frac{AC}{AB}\Rightarrow\frac{AE}{AC}=\frac{AM}{AB}\)

Từ câu b: \(\frac{AD}{AB}=\frac{AM}{AC}\)và ta vừa cm \(\frac{AE}{AC}=\frac{AM}{AB}\Rightarrow\frac{AD.AE}{AB.AC}=\frac{AM^2}{AC.AB}\Rightarrow AD.AE=AM^2\) 

d. Do \(AD.AE=AM^2;\widehat{DAM}=\widehat{MAE}=90^o\Rightarrow\Delta DAM\sim\Delta MAE\left(c-g-c\right)\)

\(\Rightarrow\widehat{DMA}=\widehat{MEA}\Rightarrow\widehat{DME}=90^o\). Lại có \(\widehat{EDM}=\widehat{ABC}\Rightarrow\Delta ABC\sim\Delta MDE\left(g-g\right)\)

Để  \(\frac{S_{ABC}}{S_{MDE}}=\frac{1}{4}\Rightarrow\) tỉ số đồng dạng \(k=\frac{1}{2}.\)

Gọi AH là đường cao của tam giác ABC, khi đó AM = 2AH \(\Rightarrow\widehat{AMB}=30^o.\)

Vậy M là một điểm thuộc AB sao cho \(\widehat{AMB}=30^o.\)