K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2018

(Bạn tự vẽ hình giùm)

1/ \(\Delta ABC\)vuông tại A

=> \(BC^2=AB^2+AC^2\)(định lý Pitago)

=> \(BC^2=9^2+6^2\)

=> \(BC^2=9+36\)

=> \(BC^2=45\)

=> \(BC=\sqrt{45}\)(cm)

2/ Ta có: \(AE=EC=\frac{AC}{2}=\frac{6}{2}\)= 3 (cm)

\(\Delta BAD\)và \(\Delta EAD\)có: BA = EA (= 3cm)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác \(\widehat{A}\))

Cạnh AD chung

=> \(\Delta BAD\)\(\Delta EAD\)(c. g. c) (đpcm)

3/ \(\Delta ABC\)và \(\Delta AME\)có: \(\widehat{A}\)chung

AB = AE (\(\Delta BAD\)\(\Delta EAD\))

\(\widehat{ABC}=\widehat{AEM}\)(\(\Delta BAD\)\(\Delta EAD\))

=> \(\Delta ABC\)\(\Delta AME\)(g. c. g) => AC = AM (hai cạnh tương ứng)

nên \(\Delta ACM\)cân tại A

và \(\widehat{A}=90^o\)

=> \(\Delta ACM\)vuông cân tại A (đpcm)

4/ Ta có: \(\widehat{AEM}+\widehat{AME}=90^o\)

=> \(\widehat{AEM}< 90^o\)(vì số đo của \(\widehat{AEM}\)và \(\widehat{AME}\)luôn luôn là số dương)

=> \(\widehat{MEC}>90^o\)(tự chứng minh)

=> \(\Delta MEC\)tù => MC là cạnh lớn nhất => ME < MC

29 tháng 4 2018

áp dụng đ/lý pitago vào tam giác v ABC ta đ̣c BC^2=AB^2+AC^2=3^2+6^2   BC=3căn5 cm                             câu b  xét tam g ABD và tam g AED ta cóAB=AE=3 cm góc BAD=góc EAD(gt) AD chung nên 2 tam g = nhau    câu c góc ABC=góc AEM(VÌgócABD=AED mà AED+AME=90 độ)   xét tam giác ABC và tg AMEcógócA chung AB=AE gócABC=AEM  nên 2 tgiác =nhau suy raAM=AC suy ra tamg AMC v cân    

26 tháng 11 2018

!. Xét 2 tam giác AMC và tam giác AMB, ta thấy:

\(\widehat{CAM}=\widehat{BAM}\)(Vì AM là tia phân giác của \(\widehat{CAB}\))

CA=BA (gt)

\(\widehat{ACM}=\widehat{ABM}\)(gt)

Từ các giả thiết trên, suy ra:

\(\Delta AMC=\Delta AMB\)(g-c-g)

16 tháng 8 2016

bạn kẻ được hình của cả 2 bài rồi đúng ko. mình chỉ trả lời câu hỏi chứ ko vẽ hình đâu bạn nha

Bài 1:

a) xét tam giác ABE và tam giác DBE có: góc BAE = góc BDE (= 90o) ; cạnh BE chung; góc ABE = góc DBE ( do BE là phân giác của góc B)

=> tam giác ABE = tam giác DBE ( trường hợp cạnh huyền góc nhọn)

b) Do tam giác ABE = tam giác DBE ( chứng minh câu a) => AB = BD và AE = ED ( cặp cạnh tương ứng) => BE là trung trực của AD

c) xét tam giác AEF  và tam giác DEC có: AE = DE ( c/m câu b); góc AEF = góc DEC ( đối đỉnh); góc FAE = góc EDC (=90o)

=> tam giác AEF  = tam giác DEC ( trường hợp g.c.g ) => AE = DC     (1)

mặt khác, AB = BD ( c/m câu b)      (2)      => tam giác ABD cân tại B => góc BDA = góc B :2     (3)

từ (1) và (2) => AB + AE = BD + DC hay BE = BC => tam giác BEC cân tại B => góc BCE = góc B : 2     (4)

từ (3) và (4) => góc BDA = góc BCE mà 2 góc này ở vị trí đồng vị so với DC nên AD // FC

Bài 2:

a) xét tam giác ABD và tam giác HBD có: góc BAD = góc BHD (= 90o) ; cạnh BD chung; góc ABD = góc HDB ( do BD là phân giác của góc B) => tam giác ABD =  tam giác HBD => AD = DH ( cặp cạnh tương ứng)

b) do AD = DH ( c/m câu a)           (1)

xét tam giác DHC có góc DHC = 90o => DH < DC ( quan hệ đường vuông góc với đường xiên)    (2)

từ (1) và (2) => AD < DC

c) xét tam giác ADK  và tam giác HDC có: AD = DH ( c/m câu a); góc ADK = góc HDC ( đối đỉnh); góc DAK = góc DHC (=90o)

=> tam giác ADK  = tam giác HDC ( trường hợp g.c.g ) => AK = HC     (3)

mặt khác, AB = BH ( do tam giác ABD =  tam giác HBD)      (4)      

từ (1) và (2) => AB + AK = BH + HC hay BK = BC => tam giác BEC cân tại B 

Xong rồi nha :)

16 tháng 9 2016

chịu 

thông cảm nhé

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.a) Chứng minh: Tam giác ABM = tam giác ACM.b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.Chứng minh: BH = CK.c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.Chứng minh: Tam giác IBM cân.BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.a) Tính độ dài cạnh AC.b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED...
Đọc tiếp

BÀI 1: Cho tam giác ABC cân tại A. Gọi M là trung điểm của cạnh BC.

a) Chứng minh: Tam giác ABM = tam giác ACM.

b) Từ M vẽ MH vuông góc AB và MK vuông góc AC.

Chứng minh: BH = CK.

c) Từ B vẽ BP vuông góc AC, BP cắt MH tại I.

Chứng minh: Tam giác IBM cân.

BÀI 2: Cho tam giác ABC vuông tại A, có AB = 4cm, BC = 5cm.

a) Tính độ dài cạnh AC.

b) Tia phân giác của góc ABC cắt AC tại D. Kẻ DE vuông góc BC, tia ED cắt tia BA tại F.

Chứng minh: DC = DF.

c) Chứng minh: AE song song FC. ( AE // FC )

BÀI 3: Cho tam giác ABC cân tại A. ( A^ < 90* ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.

a) Chứng minh: Tam giác ABD = tam giác ACE.

b) Chứng minh: Tam giác AED cân.

c) Chứng minh: AH là đường trung trực của ED.

b) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.

Chứng minh: ECB^ = DKC^.

#helpme

#mainopbai

 

 

5
24 tháng 4 2017

Bài 3

a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có

AB=AC( vì tam giác ABC cân tại A)

Góc A chung

=> Tam giác ABD= tam giác ACE ( cạnh huyền- góc nhọn)

b) Có tam giác ABD= tam giác ACE( theo câu a)

=> AE=AD ( 2 cạnh tương ứng)

=> Tam giác AED cân tại A

c) Xét các tam giác vuông AEH và ADH có

Cạnh huyền AH chung

AE=AD

=> Tam giác AEH=tam giác ADH ( cạnh huyền- cạnh góc vuông)

=>HE=HD

Ta có AE=AD và HE=HD hay AH là đường trung trực của ED

d) Ta có AB=AC, AE=AD

=>AB-AE=AC-AD

=>EB=DC

Xét tam giác EBC vuông tại E và tam giác DCK vuông tại D có

BD=DK

EB=Dc

=> tam giác EBC= tam giác DCK ( 2 cạnh góc vuông)

=> Góc ECB= góc DEC ( 2 góc tương ứng)

24 tháng 4 2017

Bài 1:

Xét tam giác ABM và tam giác ACM có:

AB=AC(tam giác ABC cân tại A)

BM=MC(gt)

AM cạnh chung

Suy ra tam giác ABM= tam giác ACM (c-c-c)

b) Xét hai tam giác vuông MBH và MCK có:

BM=MC(gt)

góc ABC=góc ACB (tam giác ABC cân tại A)

Suy ra tam giác MBH= tam giác MCK (ch-gn)

Suy ra BH=CK

c) MK vuông góc AC (gt)

BP vuông góc AC (gt)

Suy ra MK sông song BD

Suy ra góc B1= góc M2 (đồng vị)

Mà M1=M2(Tam giác HBM= tam giác KCM)

Suy ra góc B1= góc M1

Suy ra tam giác IBM cân

xong bài 1 đẻ bài 2 mình nghĩ tiếp