K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2023

Hệ thức lượng trong tam giác vuông :

\(AB^2=BC.BH\left(1\right)\)

\(AC^2=BC.CH\left(2\right)\)

\(\left(1\right):\left(2\right)\Rightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}=\dfrac{25}{36}\left(\dfrac{AB}{AC}=\dfrac{5}{6}\right)\)

\(\Rightarrow BH=\dfrac{25}{36}CH\)

mà \(AH^2=BH.CH\)

\(\Rightarrow\dfrac{25}{36}CH^2=AH^2=30^2\)

\(\Rightarrow\dfrac{5}{6}CH=30\Rightarrow CH=\dfrac{30.6}{5}=36\) (\(\left(cm\right)\)

\(\Rightarrow BH=\dfrac{25}{36}.36=25\) \(\left(cm\right)\)

12 tháng 7 2023

A B C H

Xét tg vuông ABH và tg vuông ACH có

\(\widehat{BAH}=\widehat{ACH}\) (cùng phụ với \(\widehat{ABC}\) )

=> tg ABH đồng dạng với tg ACH

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{HB}{AH}=\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Rightarrow\dfrac{30}{HC}=\dfrac{5}{6}\Rightarrow HC=\dfrac{6.30}{5}=36cm\)

\(\Rightarrow\dfrac{HB}{30}=\dfrac{5}{6}\Rightarrow HB=\dfrac{5.30}{6}=25cm\)

Bài 2: 

Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{25}{13}\left(cm\right)\\CH=\dfrac{144}{13}\left(cm\right)\end{matrix}\right.\)

Bài 1: 

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

19 tháng 9 2021

\(1,\dfrac{AB}{AC}=\dfrac{5}{6}\Leftrightarrow AB=\dfrac{5}{6}AC\)

Áp dụng HTL tam giác

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{\dfrac{25}{36}AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36}{25AC^2}+\dfrac{1}{AC^2}\\ \Leftrightarrow\dfrac{1}{900}=\dfrac{36+25}{25AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{61}{25AC^2}\\ \Leftrightarrow25AC^2=54900\Leftrightarrow AC^2=2196\Leftrightarrow AC=6\sqrt{61}\left(cm\right)\\ \Leftrightarrow AB=\dfrac{5}{6}\cdot6\sqrt{61}=5\sqrt{61}\\ \Leftrightarrow BC=\sqrt{AB^2+AC^2}=61\left(cm\right)\)

Áp dụng HTL tam giác: 

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=...\\CH=\dfrac{AC^2}{BC}=...\end{matrix}\right.\)

Bài 1:

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)

\(\Leftrightarrow HB=\dfrac{25}{36}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2\cdot\dfrac{25}{36}=900\)

\(\Leftrightarrow HC=36\left(cm\right)\)

hay HB=25(cm)

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

NV
15 tháng 9 2021

\(\dfrac{AB}{AC}=\dfrac{5}{6}\Rightarrow AC=\dfrac{6AB}{5}\) \(\Rightarrow AC^2=\dfrac{36AB^2}{25}\)

Áp dụng hệ thức lượng:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Leftrightarrow\dfrac{1}{900}=\dfrac{1}{AB^2}+\dfrac{1}{\dfrac{36AB^2}{25}}\)

\(\Rightarrow AB^2=1525\Rightarrow AC^2=2196\)

\(BC^2=AB^2+AC^2=3721\Rightarrow BC=61\left(cm\right)\)

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=25\left(cm\right)\)

\(HC=BC-BH=36\left(cm\right)\)

NV
22 tháng 7 2021

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\Rightarrow AB=\dfrac{5}{6}AC\)

Áp dụng hệ thức lượng: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{30^2}=\dfrac{1}{\left(\dfrac{5}{6}AC\right)^2}+\dfrac{1}{AC^2}=\dfrac{1}{AC^2}\left(\dfrac{1}{\left(\dfrac{5}{6}\right)^2}+1\right)=\dfrac{61}{25}.\dfrac{1}{AC^2}\)

\(\Rightarrow AC=6\sqrt{61}\)

\(AB=\dfrac{5}{6}AC=5\sqrt{61}\)

\(BC=\sqrt{AB^2+AC^2}=61\)

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=25\)

\(CH=BC-BH=36\)

9 tháng 8 2022

Sao lại ra 6√61 vậy ạ

21 tháng 7 2021

Xét △AHB và△CHA có:

∠AHB=∠CHA=90 độ

∠BAH=∠ACH (vì cùng phụ với ∠HAC)

⇒△AHB∼△CHA (g.g)

⇒HB/AH=AH/HC=AB/AC

Mà AB/AC=5/6

⇒HB/AH=AH/HC=5/6

Mặt khác:AH= 30 cm

⇒HB/30=30/HC=5/6

⇒HB/30=5/6 và 30/HC=5/6

⇒HB=5/6.30 và HC=30.6/5

⇒HB=25cm và HC=36cm

Vậy HB=25cm;HC=36cm

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{7}\)

nên \(\dfrac{HB}{HC}=\dfrac{25}{49}\)

hay \(HB=\dfrac{25}{49}HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC^2=15^2:\dfrac{25}{49}=441\)

\(\Leftrightarrow HC=21\left(cm\right)\)

\(\Leftrightarrow HB=\dfrac{75}{7}\left(cm\right)\)

5 tháng 9 2021

thank you bạn đẹp trai