K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2019

Vì tam giác ABC vuông tại A nên góc C nhọn. Vì thế:

sinC>0;cosC>0;tanC>0;cotC>0sinC>0;cosC>0;tanC>0;cotC>0

Vì hai góc B và C phụ nhau nên sinC = cosB = 0,8.

Ta có:

Sin2C+cos2C=1Sin2C+cos2C=1

⇒cos2C=1−sin2C=1−(0,8)2=0,36⇒cos2C=1−sin2C=1−(0,8)2=0,36

⇒cosC=0,6;⇒cosC=0,6;

tgC=sinCcosC=0,80,6=43;tgC=sinCcosC=0,80,6=43;

cotgC=cosCsinC=0,60,8=34

24 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

24 tháng 4 2017

Vì hai góc B và C phụ nhau nên sinC=cosB=0,8.

Ta có:

2016-11-05_160011

Nhận xét: Nếu biết sinα (hay cosα) thì ta có thể tính được ba tỷ số lượng giác còn lại.

23 tháng 6 2021

Vì tam giác ABC vuông nên ta có:

 \(\text{cosB=sinC=0,8}\)

\(\text{cosC=}\)\(\sqrt{1-sin^2C}\) (theo công thức trong SGK ^^)=\(\sqrt{1-0,8^2}=0,6\)

\(tangC=\dfrac{sinC}{cosC}=\dfrac{0,8}{0,6}=\dfrac{4}{3}\left(\approx1,3\right)\)

\(cotangC=\dfrac{cosC}{sinC}=\dfrac{0,6}{0,8}=0,75\)

15 tháng 4 2017

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có: ∠B + ∠C = 90o nên sinC = cosB = 0,8

Từ công thức sin2C + cos2C = 1 ta suy ra:

Để học tốt Toán 9 | Giải bài tập Toán 9

10 tháng 2 2018

 

Để học tốt Toán 9 | Giải bài tập Toán 9

Ta có: ∠B + ∠C = 90o nên sinC = cosB = 0,8

Từ công thức sin2C + cos2C = 1 ta suy ra:

Để học tốt Toán 9 | Giải bài tập Toán 9

 

28 tháng 7 2018

ai giúp mik vs : cảm ơn mn nhé >3

29 tháng 7 2018

ai giúp mik đi huhu

16 tháng 9 2016

cosB=0,8=4/5 => BA=4 , BC=5

Áp dụng định lý Pytago trong tam giác vuông ABC, có:

AC2=BC2-BA2

(=) AC2=52-42=9

(=) AC=3

Ta có:

sinC=BA/BC=4/5

cosC=AC/BC=3/5

tanC=BA/AC=4/3

cotC=AC/BA=3/4

16 tháng 9 2016

\(sin^2B+cos^2B=1\Leftrightarrow sin^2B-1-\left(0,8\right)^2=0.36.\Leftrightarrow sinB=0,6.\\\)

\(tanB=\frac{sinB}{cosB}=\frac{0,6}{0,8}=\frac{3}{4}\)

\(cotB=\frac{1}{tanB}=\frac{1}{\frac{3}{4}}=\frac{4}{3}.\)

NV
9 tháng 8 2021

Ta có:

\(cosB=\dfrac{AB}{BC}\Rightarrow AB=BC.cosB=10.0,8=8\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}=6\left(cm\right)\)

b.

\(sinC=\dfrac{AB}{BC}=\dfrac{8}{10}=0,8\)

\(cosC=\dfrac{AC}{BC}=\dfrac{6}{10}=0,6\)

\(tanC=\dfrac{AB}{AC}=\dfrac{8}{6}=\dfrac{4}{3}\)

\(cotC=\dfrac{AC}{AB}=\dfrac{3}{4}\)