Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
A B C H M
Gọi AM là đường trung tuyến kẻ từ A xuống cạnh BC ( M thuộc BC)
Ta có : \(S_{ABC}=\frac{1}{2}BC.AH\)
Vì BC cố định (tức là có độ dài không đổi) nên diện tích tam giác ABC đạt giá trị lớn nhất khi AH đạt giá trị lớn nhất.
Mặt khác, ta luôn có \(AH\le AM=\frac{1}{2}BC\) (hằng số)
Vậy AH đạt giá trị lớn nhất bằng \(AM=\frac{BC}{2}\)
Khi đó diện tích lớn nhất của tam giác ABC là \(S_{ABC}=\frac{1}{2}.BC.\frac{BC}{2}=\frac{BC^2}{4}\)
Vậy khi H trùng với điểm M thì tam giác ABC có diện tích lớn nhất, tức là tam giác ABC vuông cân tại A.