Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
a: Xét ΔABC có
F,E lần lượt là trung điểm của CA,CB
=>FE là đường trung bình của ΔABC
=>FE//AB và \(FE=\dfrac{AB}{2}\)
Ta có: FE//AB
D\(\in\)AB
Do đó: FE//AD và FE//BD
Ta có: \(FE=\dfrac{AB}{2}\)
\(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)
Do đó: FE=AD=DB
Xét tứ giác ADEF có
FE//AD
FE=AD
Do đó: ADEF là hình bình hành
Hình bình hành ADEF có \(\widehat{FAD}=90^0\)
nên ADEF là hình chữ nhật
=>AE=DF
Xét tứ giác BEFD có
FE//BD
FE=BD
Do đó: BEFD là hình bình hành
b: Xét ΔABC có
D,F lần lượt là trung điểm của AB,AC
=>DF là đường trung bình của ΔABC
=>DF//BC và DF=BC/2
Ta có: DF//BC
E,H\(\in\)BC
Do đó: DF//EH
Ta có: ΔHAC vuông tại H
mà HF là đường trung tuyến
nên HF=FA
mà FA=ED(ADEF là hình chữ nhật)
nên HF=ED
Xét tứ giác EHDF có EH//DF
nên EHDF là hình thang
Hình thang EHDF có ED=HF
nên EHDF là hình thang cân
c: Xét tứ giác AECI có
F là trung điểm chung của AC và EI
=>AECI là hình bình hành
=>AI//CE
mà E\(\in\)CB
nên AI//CB
Xét tứ giác BIKE có
F là trung điểm chung của BK và IE
=>BIKE là hình bình hành
=>IK//EB
mà E\(\in\)BC
nên IK//BC
Ta có: AI//BC
IK//BC
AI,IK có điểm chung là I
Do đó: A,I,K thẳng hàng
a) Xét ΔABC có
D là trung điểm của AB(gt)
F là trung điểm của AC(gt)
Do đó: DF là đường trung bình của ΔABC(định nghĩa đường trung bình của tam giác)
⇒DF//BC và \(DF=\frac{BC}{2}\)(định lí 2 về đường trung bình của tam giác)
Ta có: \(DF=\frac{BC}{2}\)(cmt)
mà \(BE=EC=\frac{BC}{2}\)(do E là trung điểm của BC)
nên DF=BE
Xét tứ giác BDFE có DF//BE(do DF//BC và E∈BC) và DF=BE(cmt)
nên BDFE là hình bình hành(dấu hiệu nhận biết hình bình hành)
a)Ta có
BK=KC (GT)
AK=KD( Đối xứng)
suy ra tứ giác ABDC là hình bình hành (1)
mà góc A = 90 độ (2)
từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật
b) ta có
BI=IA
EI=IK
suy ra tứ giác AKBE là hình bình hành (1)
ta lại có
BC=AD ( tứ giác ABDC là hình chữ nhật)
mà BK=KC
AK=KD
suy ra BK=AK (2)
Từ 1 và 2 suy ra tứ giác AKBE là hình thoi
c) ta có
BI=IA
BK=KC
suy ra IK là đường trung bình
suy ra IK//AC
IK=1/2AC
mà IK=1/2EK
Suy ra EK//AC
EK=AC
Suy ra tứ giác AKBE là hình bình hành
B A C D E K
a) Xét tứ giác AKCH có :
AD = DC ( D là trung điểm AC )
HD = DK ( K là điểm đối xứng của H qua D )
=> AKCH là hình bình hành (1)
Xét ∆ vuông AHC có :
HD là trung truyến
=> HD = AD = DC
Mà HD + DK = HK
AD + DC = AC
=> HK = AC (2)
Từ (1) và (2) => AKCH là hình chữ nhật
b) Xét ∆ABC có :
E là trung điểm AB
D là trung điểm BC
=> ED là đường trung bình ∆ABC
=> ED //BC
Xét ∆ABC có :
E là trung điểm AC
I là trung điểm BC
=> EI là đường trung bình ∆ABC
=> EI//AC , EI = \(\frac{1}{2}AC\)
Xét tứ giác EDCI có :
ED// IC ( I \(\in\)BC )
EI//DC ( D \(\in\)AC)
=> EDCI là hình bình hành
c) Vì ED //HI ( H , I \(\in\)BC )
=> EDIH là hình thang
Vì EI = \(\frac{1}{2}AC\)(cmt)
Mà HD = AD = DC (cmt)
=> HD = \(\frac{1}{2}AC\)
=> EI = HD
Mà EDIH là hình thang
=> EDIH là hình thang cân ( 2 đường chéo bằng nhau )