K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

25 tháng 12 2023

a: Xét ΔABC có

F,E lần lượt là trung điểm của CA,CB

=>FE là đường trung bình của ΔABC

=>FE//AB và \(FE=\dfrac{AB}{2}\)

Ta có: FE//AB

D\(\in\)AB

Do đó: FE//AD và FE//BD

Ta có: \(FE=\dfrac{AB}{2}\)

\(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)

Do đó: FE=AD=DB

Xét tứ giác ADEF có

FE//AD

FE=AD

Do đó: ADEF là hình bình hành

Hình bình hành ADEF có \(\widehat{FAD}=90^0\)

nên ADEF là hình chữ nhật

=>AE=DF

Xét tứ giác BEFD có

FE//BD

FE=BD

Do đó: BEFD là hình bình hành

b: Xét ΔABC có

D,F lần lượt là trung điểm của AB,AC

=>DF là đường trung bình của ΔABC

=>DF//BC và DF=BC/2

Ta có: DF//BC

E,H\(\in\)BC

Do đó: DF//EH

Ta có: ΔHAC vuông tại H

mà HF là đường trung tuyến

nên HF=FA

mà FA=ED(ADEF là hình chữ nhật)

nên HF=ED

Xét tứ giác EHDF có EH//DF

nên EHDF là hình thang

Hình thang EHDF có ED=HF

nên EHDF là hình thang cân

c: Xét tứ giác AECI có

F là trung điểm chung của AC và EI

=>AECI là hình bình hành

=>AI//CE

mà E\(\in\)CB

nên AI//CB

Xét tứ giác BIKE có

F là trung điểm chung của BK và IE

=>BIKE là hình bình hành

=>IK//EB

mà E\(\in\)BC

nên IK//BC

Ta có: AI//BC

IK//BC

AI,IK có điểm chung là I

Do đó: A,I,K thẳng hàng

a) Xét ΔABC có

D là trung điểm của AB(gt)

F là trung điểm của AC(gt)

Do đó: DF là đường trung bình của ΔABC(định nghĩa đường trung bình của tam giác)

⇒DF//BC và \(DF=\frac{BC}{2}\)(định lí 2 về đường trung bình của tam giác)

Ta có: \(DF=\frac{BC}{2}\)(cmt)

\(BE=EC=\frac{BC}{2}\)(do E là trung điểm của BC)

nên DF=BE

Xét tứ giác BDFE có DF//BE(do DF//BC và E∈BC) và DF=BE(cmt)

nên BDFE là hình bình hành(dấu hiệu nhận biết hình bình hành)

Cái này mik ko bít làm XD

Sorry!

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K

a) Xét tứ giác AKCH có : 

AD = DC ( D là trung điểm AC )

HD = DK ( K là điểm đối xứng của H qua D )

=> AKCH là hình bình hành (1)

Xét ∆ vuông AHC có : 

HD là trung truyến 

=> HD = AD = DC 

Mà HD + DK = HK 

AD + DC = AC 

=> HK = AC (2)

Từ (1) và (2) => AKCH là hình chữ nhật 

b) Xét ∆ABC có : 

E là trung điểm AB 

D là trung điểm BC 

=> ED là đường trung bình ∆ABC 

=> ED //BC

Xét ∆ABC có : 

E là trung điểm AC

I là trung điểm BC

=> EI là đường trung bình ∆ABC 

=> EI//AC , EI = \(\frac{1}{2}AC\)

Xét tứ giác EDCI có :

ED// IC ( I \(\in\)BC )

EI//DC ( D \(\in\)AC)

=> EDCI là hình bình hành 

c) Vì ED //HI ( H , I \(\in\)BC )

=> EDIH là hình thang

Vì EI = \(\frac{1}{2}AC\)(cmt)

Mà HD = AD = DC (cmt)

=> HD = \(\frac{1}{2}AC\) 

=> EI = HD 

Mà EDIH là hình thang 

=> EDIH là hình thang cân ( 2 đường chéo bằng nhau )

10 tháng 5 2020

Phần d có ai làm được không ạ?