Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
A B C H E D 3 4
a)
Xét \(\Delta ABC\) và \(\Delta HBA\)có:
\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)
\(\widehat{ABC}\)là góc chung (giả thiết)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)
b)
\(\Delta ABC\)vuông tại A
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
\(\Delta ABC\)đồng dạng với \(\Delta HBA\)
\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)
c) Ta có
\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)
Xét \(\Delta ABC\)và \(\Delta DEC\)có
\(\widehat{BAC}=\widehat{CDE}=90^o\)
\(\widehat{ACB}\)là góc chung (giả thiết)
Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)
\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)
d)
\(\Delta AHB\)vuông tại H
\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)
Ta có; \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)
Ta lại có:
\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)
\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)
Ta lại có:
\(AE=AC-EC=4-1=3\left(cm\right)\)
mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A
Vậy \(\Delta ABE\)cân tại A
Hình dễ vẽ; bạn tự vẽ nhé!
a) Xét tam giác HBA và tam giác ABC; ta có:
\(\widehat{AHB}=\widehat{BAC}=90^0\)
\(\widehat{B}\)- chung
\(\Rightarrow\)tam giác HBA đồng dạng tam giác ABC (g-g)
b) Xét tam giác ABH và tam giác ADH có:
\(\widehat{AHB}=\widehat{AHD}=90^0\)
\(AH\)- cạnh chung
\(BH=HD\)(GT)
\(\Rightarrow\)Tan giác ABD = tam giác ADH (c-g-c)
\(\Rightarrow\)AB = AD (2 cạnh tương ứng)
Vì tam giác HBA đồng dạng với tam giác ABC
\(\Rightarrow\frac{HB}{AB}=\frac{AB}{BC}\Rightarrow HB.BC=AB.AB=AB.AD\)(Vì AB = AD theo chứng minh trên)
Vậy AB.AD=BH.BC (ĐPCM)
a) Xét tam giác AHB và tam giác CAB có:
Góc AHB=góc CAB=90 độ(gt)
Góc B chung
=> tam giác AHB đồng dạng tam giác CAB(g.g)
b) Xét tam giác ABC vuông tại A(gt) có: BC2= AB2 + AC2 = 225+400=625 => BC=25(cm) (pitago)
Ta có: SABC = 1/2.AB.AC = 1/2.15.20 = 150(cm2)
Nên SABC= 1/2.AH.BC=1/2.AH.25=150(cm2) => AH=12(cm)
Xét tam giác ABC vuông tại H(đường cao AH) có: BH2=AB2-AH2(pitago) => BH=9(cm)
Vậy...
c) Ta có AC/BD=20/30=2/3
Và AM/BH=6/9=2/3
=> AC/BD=AM/BH
Mặt khác ta có Góc ABC+ Góc BAH=90 độ(Góc AHB=90 độ)
Mà góc HAC+ góc BAH=90 độ(vì góc BAC=90 độ)
=> Góc ABC= Góc CAM
Xét tam giác DBH và tam giác CAM có:
Góc ABC = Góc CAM(cmt)
AC/BD=AM/BH(cmt)
=> Tam giác DBH đồng dạng tam giác CAM(c.g.c)
=> HD/MC=BD/AC => HD/BD=MC/AC hay HD.AC=BD.MC