K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

10 tháng 4 2020

1, Xét △ABC vuông tại A có: AC2 + AB2 = BC2 (định lý Pytago)

=> AC2 = BC2 - AB2 = 102 - 82 = 36

=> AC = 6 (cm)

2. Xét △AMB và △DMC 

Có: AM = MD (gt)

     AMB = DMC (2 góc đối đỉnh)

       MB = MC (gt)

=> △AMB = △DMC (c.g.c)

=> MAB = MDC (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> AB // DC (dhnb)

Mà AB ⊥ AC

=> CD ⊥ AC (từ vuông góc đến song song)

3. Xét △AHC và △EHC cùng vuông tại H

Có: CH là cạnh chung

       AH = EH (gt)

=> △AHC = △EHC (2cgv)

=> AC = EC (2 cạnh tương ứng)

=> △ACE cân tại C

4, Xét △CAM và △BDM

Có: AM = DM (gt)

    CMA = BMD (2 góc đối đỉnh)

      CM = MB (gt)

=> △CAM = △BDM (c.g.c)

=> AC = BD (2 cạnh tương ứng)

Mà AC = CE (cmt)

=> BD = CE

2 tháng 4 2017

vì AM là trung tuyến của tam giác vuông ABC (M là trung điểm của cạnh BC)

=>AM=1/2*BC=BM=CM

xét tam giácBMA và tam giác DMC có : 

AM=MD(gt)

góc BMA=góc DMC (đ đ)

BM=MC(gt)

=> 2 tam giác đó bằng nhau(c-g-c)

=>ACB=ADC(2GTU) 

AB=DC(2ctu)

ta có BM+CM =BC, AM+MD=AD

mà BM=CM, AM=MD

và  AM=BM=CM

=> BC=AD

xét tam giác BAC và tam giác DCA có :

BA=DC (cmt)

AC là cạnh chung 

BC=AD (cmt)

=> 2 tam giác đó bằng nhau (c--c-c)=>BAC=DCA=90 độ ( 2gtu)=>DC vuông góc vs AC

2 tháng 4 2017

b) tam giác MAC= tam giác MAE (cgc)=> AC= AE (2ctu)=>CAE cân tại A

b) ΔACE cân

Trả lời:

Xét ΔACH và ΔECH có :

AH = HE (gt)

AHCˆ=EHCˆ(=90o)

HC: chung

=> ΔACH=ΔECH (cạnh huyền-cạnh góc vuông)

=> CA= CE (2 cạnh tương ứng)

Xét ΔCAE có :

AC = CE (cmt)

=> ΔCAE cân tại C

                                       ~Học tốt!~

23 tháng 3 2020
https://i.imgur.com/94kTC2t.jpg
23 tháng 3 2020

cảm ơn nhoa oaoa

gCho tam giác Abc vuông tại A (AB>ACgCho tam giác Abc vuông tại A (AB>AC) Gọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .TÍNH ac biết ab=8 , bc=10cd vuông actam giác cae cânbd =ceae vuông edGọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .TÍNH ac biết ab=8...
Đọc tiếp

gCho tam giác Abc vuông tại A (AB>ACgCho tam giác Abc vuông tại A (AB>AC) Gọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .

TÍNH ac biết ab=8 , bc=10

cd vuông ac

tam giác cae cân

bd =ce

ae vuông edGọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .

TÍNH ac biết ab=8 , bc=10

cd vuông ac

tam giác cae cân

bd =ce

Cho tam giác Abc vuông tại A (AB>AC) Gọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .

TÍNH ac biết ab=8 , bc=10

cd vuông ac

tam giác cae cân

bd =ce

ae vuông edCho tam giác Abc vuông tại A (AB>AC) Gọi M là trung điểm Bc Trên tia đối MA lấy d sao cho md=ma.Vẽ ah vuông với bc tại h . trên tia đối của tia ha lấy e sao cho he = ha .

TÍNH ac biết ab=8 , bc=10

cd vuông ac

tam giác cae cân

bd =ce

ae vuông ed

ae vuông ed

0
28 tháng 11 2021

a, tam giác ABC vuông tại A (gt) => BC^2 = AC^2 + AB^2 (pytago)

BC = 10; AB = 8 (Gt)

=> AC^2 = 10^2 - 8^2

=> AC^2 = 36

=> AC = 6 do AC > 0

b, xét tam giác AMB và tam giác DMC có : AM = MD (gt)

BM = MC do M là trung điểm của BC(gt)

^BMA = ^DMC (đối đỉnh)

=> tam giác AMB = tam giác DMC (c-g-c)

=> ^ABM = ^MCD mà 2 góc này slt

=> AB // CD 

AB _|_ AC

=> CD _|_ AC 

c, xét tam giác ACE có : AH _|_ AE 

AH = HE

=> tam giác ACE cân tại C 

d, xét tam giác BMD và tam giác CMA có L BM = MC

AM = MD

^BMD = ^CMA

=> tam giác BMD = tam giác CMA (c-g-c)

=> BD = AC

AC = CE do tam giác ACE cân tại C (câu c)

=> BD = CE

11 tháng 3 2020

B D A C

Hình hơi xấu xíu :vv

a) Xét t.giác AMB và t.giác DMC có :

MA = MD ( gt )

\(\widehat{AMB}=\widehat{DMC}\left(doi-dinh\right)\)

MB = MC (gt)

Vậy t.giác AMB = t.giác DMC (c.g.c)

b) Do : t.giác AMB =  t.giác DMC ( cmt ) 

=> AB = DC ; \(\widehat{ABC}=\widehat{DCB}\)

Xét t.giác ABC và t.giác DCB có :

BC : cạnh chung

\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)

AB = DC ( cmt )

Vậy t.giác ABC = t.giác DCB ( c.g.c )

=> AC = BD

\(\widehat{ACB}=\widehat{DBC}\) mà hai góc này ở vị trí so le trong.

=> AC // BD

Vì : t.giác ABC = t.giác DCB ( cmt )

=> \(\widehat{BAC}=\widehat{BDC}=90^0\)