K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề sai rồi bạn

10 tháng 11 2021

để hỏi lại cô

 

22 tháng 7 2018

A C B H E F t

22 tháng 7 2018

tg ABC vuông tại A nên: AC= căn(BC2 -AB2)= CĂN(10^2- 6^2) =8 cm

Có AH.BC= AB.AC

=> AH= (8.6)/10=4,8 cm

Có: AB2= BH.BC => BH=3,6 => CH=6,4

30 tháng 10 2021

a, Vì \(BC^2=400=256+144=AC^2+AB^2\) nên tam giác ABC vuông tại A

b, Áp dụng HTL: \(AM=\dfrac{AB\cdot AC}{BC}=9,6\left(cm\right)\)

\(BM=\dfrac{AB^2}{BC}=7,2 \left(cm\right)\)

c, Áp dụng HTL: \(AE\cdot AB=AM^2\)

Áp dụng PTG: \(AM^2=AC^2-MC^2\)

Vậy \(AE\cdot AB=AC^2-MC^2\)

d, Áp dụng HTL: \(AE\cdot AB=MB\cdot MC=AM^2\)

\(\left\{{}\begin{matrix}\widehat{EAM}=\widehat{ACM}\left(cùng.phụ.\widehat{MAC}\right)\\\widehat{AEM}=\widehat{AMC}=90^0\end{matrix}\right.\Rightarrow\Delta AEM\sim\Delta CMA\left(g.g\right)\\ \Rightarrow EM\cdot AC=AM^2\)

Vậy ta được đpcm

31 tháng 10 2021

 

 

23 tháng 6 2017

đề thiếu ko?? không cho số liệu gì làm sao tính?

27 tháng 7 2019

XÉt tứ giác AEHF có HEA=90 , HFA=90 , EAF=90

nên tứ giác AEHF là hcn

Xét tam giác ABH vuông tại H HE vuông với AB

nên BA*AE=AH2 

Xét tam giác ACH vuông tại H HF là đường cao 

nên AF*AC=AH2 

Vậy AB*AE=AF*AC

đề câu b sao ý không có điểm o mà lại có oe

28 tháng 7 2021

a) tam giác ABC vuông tại A nên áp dụng Py-ta-go:

\(\Rightarrow AC^2=BC^2-AB^2=25^2-15^2=400\Rightarrow AC=20\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{15.20}{25}=12\left(cm\right)\)

b) tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{15^2}{25}=9\left(cm\right)\)

tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AH.HB=HE.AB\Rightarrow HE=\dfrac{AH.HB}{AB}=\dfrac{12.9}{15}=\dfrac{36}{5}\left(cm\right)\)

b) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng

\(\Rightarrow AE.AB=AH^2\)

tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng

\(\Rightarrow AF.AC=AH^2=AE.AB\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=25^2-15^2=400\)

hay AC=20(cm)

c) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H, ta được:

\(AE\cdot AB=AH^2\)(1)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H, ta được:

\(AF\cdot AC=AH^2\)(2)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)