K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

A B C D H M c a d b

Đặt AB=b, AC=a,AD=d vậy ta CM : 1/c+1/b=\(\sqrt{2}\)/d

Từ D hạ DH vuông AC tại H và DM vuông AB tại M, dễ dàng CM được AHDM là hình vuông. => HD=DM=d.sin45 = \(\frac{d}{\sqrt{2}}\) 

Ta có S(ABC) = S(ACD) + S(ABD) 

<=> b.c/2 = HD.b/2 + DM.c/2  <=> bc = \(\frac{bd+cd}{\sqrt{2}}\)<=> \(\sqrt{2}\)bc = bd + cd

Chia 2 vế cho b.c.d ta có pt cần CM

5 tháng 6 2020

a) Xét △BEA và △BAC có :

           \(\widehat{E}=\widehat{A}\left(=90^o\right)\)

           \(\widehat{B}\)là góc chung

\(\Rightarrow\)△BEA ~ △BAC (g.g)

b) +) Vì △BEA ~ △BAC

\(\Rightarrow\frac{AB}{BC}=\frac{BE}{AB}\)

\(\Rightarrow AB^2=BE.BC\)

\(\Rightarrow BE=1,8\left(cm\right)\)

+) Áp dụng định lý Pythagoras vào △ABC, ta được :

     \(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=5^2-3^2\)

\(\Rightarrow AC^2=16\)

\(\Rightarrow AC=4\left(cm\right)\)

+) Vì △BEA ~ △BAC

\(\Rightarrow\frac{AE}{AC}=\frac{BE}{AB}\)

\(\Rightarrow AE=\frac{AC.BE}{AB}=\frac{4\cdot1,8}{3}=2,4\left(cm\right)\)

c) Xét △BAI và △BEK có :

           \(\widehat{A}=\widehat{E}=\left(90^o\right)\)

           \(\widehat{ABI}=\widehat{IBC}\left(=\frac{1}{2}\widehat{ABC}\right)\)

\(\Rightarrow\)Vì △BAI ~ △BEK (g.g)

\(\Rightarrow\frac{EK}{AI}=\frac{BE}{BA}\)

\(\Rightarrow BE.AI=BA.EK\)(ĐPCM)

d) Vì BI là tia phân giác \(\widehat{B}\)của Vì △ABC

\(\Rightarrow\hept{\begin{cases}\frac{KA}{KE}=\frac{AB}{BE}\\\frac{IC}{IA}=\frac{BC}{AB}\end{cases}}\)

Vì Vì △BEA ~ △BAC

\(\Rightarrow\frac{AB}{BE}=\frac{BC}{AB}\)

\(\Rightarrow\frac{KA}{KE}=\frac{IC}{IA}\)(ĐPCM)

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E