K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NN
13 tháng 12 2020
A B C H K I F E
a) Tứ giác AHKI là hình vuông \(\Rightarrow S_{AHKI}=AH^2=2^2=4\left(cm^2\right)\)
b) Xét \(\Delta ABH\)và \(\Delta AFI\)có:
+) \(\widehat{AIF}=\widehat{AHB}=90^o\)
+) \(AH=AI\)( vì \(AHKI\)là hình vuông )
+) \(\widehat{BAH}=\widehat{IAF}\)( cùng phụ với \(\widehat{HAC}\))
\(\Rightarrow\Delta ABH=\Delta AFI\left(g.c.g\right)\)\(\Rightarrow AB=AF\)
Xét tứ giác \(ABEF\)có: \(BE//AF\), \(AB//EF\), \(\widehat{BAC}=90^o\), \(AB=AF\)
\(\Rightarrow ABEF\)là hình vuông ( đpcm )
a) \(S_{ẠHKI}=AH^2=4\) (cm2).
b) Áp dụng định lý Thales ta có:
\(\dfrac{AF}{AC}=\dfrac{HK}{HC}\Leftrightarrow\dfrac{AF}{AC}=\dfrac{AH}{HC}\).
Lại có: \(\Delta AHC\sim\Delta BAC\left(g.g\right)\Rightarrow\dfrac{AH}{HC}=\dfrac{BA}{AC}\).
Do đó AF = BA. Dễ dàng suy ra được ABEF là hình vuông.
c) Tứ giác FKEB nội tiếp đường tròn đường kính FB nên:
\(\widehat{EKB}=\widehat{EFB}=45^o\) (cùng chắn cung EB).
Mà \(\widehat{IHK}=45^o\) nên HI // EK.
d) Gọi X là giao điểm của BF và AE.
5 điểm F, K, E, B, A cùng thuộc đường tròn đường kính FB mà XF = XE = XA = XB nên XK = XA.
Từ đó X nằm trên đường trung trực của AK hay X nằm trên IH.
Vậy ta có đpcm.