\(\widehat{MBA}=\wide...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2023

 Gọi N là giao điểm của BM và AC. Do \(\widehat{NAM}=\widehat{NBA}\) nên \(\Delta NAM\) đồng dạng với \(\Delta NBA\), suy ra \(\dfrac{NA}{NB}=\dfrac{NM}{NA}\) \(\Rightarrow NA^2=NB.NM\)  (1)

  Mặt khác, vì tam giác ABC vuông cân tại A nên \(\widehat{ABC}=\widehat{ACB}=45^o\), lại có \(\widehat{MBA}=\widehat{MCA}\) nên ta có \(\widehat{ABC}-\widehat{MBA}=\widehat{ACB}-\widehat{MCA}\) hay \(\widehat{NBC}=\widehat{NCM}\). Từ đây có\(\Delta NCM\) đồng dạng với tam giác \(\Delta NBC\), suy ra \(\dfrac{NC}{NB}=\dfrac{NM}{NC}\Rightarrow NC^2=NB.NM\)  (2)

 Từ (1) và (2), suy ra \(NA^2=NC^2\left(=NB.NM\right)\) \(\Rightarrow NA=NC\), suy ra N là trung điểm của đoạn AC \(\Rightarrow\dfrac{AN}{AC}=\dfrac{1}{2}\). Mà \(AC=AB\) nên \(\dfrac{AN}{AB}=\dfrac{1}{2}\) 

  Mặt khác, \(\widehat{BAC}=\widehat{MAN}+\widehat{BAM}=90^o\), đồng thời \(\widehat{MAN}=\widehat{MBA}\) nên \(\widehat{MBA}+\widehat{BAM}=90^o\), do đó \(\Delta ABM\) vuông tại M \(\Rightarrow\widehat{AMB}=90^o\). Từ đó lại suy ra \(\Delta BAM\) và \(\Delta BNA\) đồng dạng, suy ra \(\dfrac{AN}{AM}=\dfrac{BA}{BM}\) hay \(\dfrac{AN}{AB}=\dfrac{AM}{BM}\). Nhưng do \(\dfrac{AN}{AB}=\dfrac{1}{2}\left(cmt\right)\) nên \(\dfrac{AM}{BM}=\dfrac{1}{2}\Rightarrow BM=2AM\) (đpcm)

22 tháng 6 2017

Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tam giác đều BCD \(\Rightarrow\)BD = BC = CD

Nối A với D

Xét tam giác ABD và tam giác ACD có:

AB = AC (do tam giác ABC cân tại A)

AD - cạnh chung

BD = CD (theo cách dựng tam giác đều)

\(\Rightarrow\)tam giác ABD = tam giác ACD (c - c - c)

\(\Rightarrow\)\(\widehat{BAD}=\widehat{CAD}\)(2 góc tương ứng)

Xét tam giác AMB và tam giác AMC có:

AM - cạnh chung

\(\widehat{BAM}=\widehat{CAM}\)(theo chứng minh trên)

AB = AC (do tam giác ABC cân tại A)

\(\Rightarrow\)tam giác ABM = tam giác ACM (c - g - c)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)

Xét tam giác MBC có: \(\widehat{MBC}+\widehat{MCB}+\widehat{BMC}=180^0\)(theo định lí tổng 3 góc của tam giác)

\(\Rightarrow10^0+30^0+\widehat{BMC}=180^0\)

\(\Rightarrow\widehat{BMC}=140^0\)

Ta có: \(\widehat{BMC}+\widehat{AMB}+\widehat{AMC}=360^0\)

\(\Rightarrow\widehat{AMB}+\widehat{AMC}=360^0-140^0=220^0\)

\(\widehat{AMB}=\widehat{AMC}\Rightarrow\widehat{AMB}=\widehat{AMC}=\frac{1}{2}220^0=110^0\)

Vậy \(\widehat{AMB}=110^0\)