Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AH,BD,CE là 3 đường cao của ΔABC
Vì ΔABC cân tại A(gt),có AH là đường cao
=>AH cũng là đường trung tuyến
=>BH=CH=\(\frac{1}{2}\)BC=\(\frac{1}{2}\cdot18=9\)
Xét ΔABH vuông tại H
=>\(AB^2=AH^2+BH^2\)(theo định lý pytago)
=>\(AH^2=AB^2-BH^2=15^2-9^2=144\)
=>AH=12
Xét ΔAHC và ΔBDC có:
\(\widehat{AHC}=\widehat{BDC}=90\)
\(\widehat{C}\) : góc chung
=>ΔAHC ~ ΔBDC (g.g)
=>\(\frac{HC}{DC}=\frac{AC}{BC}\)
hay \(\frac{9}{DC}=\frac{15}{18}\)
=>\(DC=\frac{9\cdot18}{15}=10,8\)
Xét ΔBDC vuông tại D(gt)
=>\(BC^2=DC^2+BD^2\) (theo định lý pytagp)
=>\(BD^2=BC^2-DC^2=18^2-10,8^2=207,36\)
=>BD= 14,4
Xét ΔBCE và ΔCBD có:
\(\widehat{BEC}=\widehat{CDB}=90\)
BC: cạnh chung
\(\widehat{B}=\widehat{C}\) (gt)
=>ΔBCE=ΔCBD(cạnh huyền-góc nhọn)
=>CE=BD=14,4
O A B C D K
Kẽ OA cắt đường tròn tại D cắt BC tại K
Ta có OA = OB = OD = R
\(\Rightarrow\)\(\Delta ABD\) vuông tại D
\(\Rightarrow BD=\sqrt{OD^2-AB^2}=\sqrt{10^2-8^2}=6\)
Ta có OK là đường trung trực của BC nên \(\hept{\begin{cases}OK⊥BC\\BK=CK\end{cases}}\)
Ta lại có: \(S_{\Delta ABD}=\frac{1}{2}AB.BD=\frac{1}{2}AD.BK\)
\(\Rightarrow BK=\frac{AB.BD}{AD}=\frac{8.6}{10}=4,8\)
\(\Rightarrow BC=2BK=4,8.2=9,6\)
Viết nhầm tùm lum hết. Do không thấy cái hình. Mà thôi nhìn hình sửa hộ luôn nhé
a: Ta có: OB=OC
AB=AC
Do đó: AO là đường trung trực của BC
=>A,O,H thẳng hàng
hay AD là đừog kính
b: Xét (O) có
ΔACD nội tiếp
AD là đường kính
Do đo: ΔACD vuông tại C
hay góc ACD=90 độ