K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2016

a)Ta có: BC2 = 52 = 25

AB2 + AC2 = 32 + 42 = 25

Vì AB2 + AC2 = BC2

=> Tam giác ABC vuông tại  A (Theo định lí py-ta-go đảo).

b) Xét tam giác ABH và tam giác DBH có:

Gc A = Gc D(=900)

AB=BD (gt)

HB cạnh huyền chung.

Do đó: tam giác ABH = tam giác DBH (ch-cgv)

=> Gc ABH = Gc HBD (2 góc tưng ứng)

=> BH là phân giác của Gc ABC

c) P/s: Bn viết sai đề thì phải. Tg ABC không thể cân. Mà Tg AMB hoặc Tg AMC mới cân.

Xét tg ABC vng tại A.(cm ở câu a)

Có AM là trung tuyến.

=> AM = BM = CM (Vì trung tuyến ứng vs cạnh huyền thì = nửa cạnh huyền)

=> Tg AMB hoặc Tg AMC cân.

30 tháng 4 2016

a)Ta có: BC2 = 52 = 25

AB2 + AC2 = 32 + 42 = 25

Vì AB2 + AC2 = BC2

=> Tam giác ABC vuông tại  A (Theo định lí py-ta-go đảo).

b) Xét tam giác ABH và tam giác DBH có:

Gc A = Gc D(=900)

AB=BD (gt)

HB cạnh huyền chung.

Do đó: tam giác ABH = tam giác DBH (ch-cgv)

=> Gc ABH = Gc HBD (2 góc tưng ứng)

=> BH là phân giác của Gc ABC

c) P/s: Bn viết sai đề thì phải. Tg ABC không thể cân. Mà Tg AMB hoặc Tg AMC mới cân.

Xét tg ABC vng tại A.(cm ở câu a)

Có AM là trung tuyến.

=> AM = BM = CM (Vì trung tuyến ứng vs cạnh huyền thì = nửa cạnh huyền)

=> Tg AMB hoặc Tg AMC cân.

24 tháng 6 2020

A)  ta có :AB2=32=9

                 AC2=42=16

                 BC2=52=25

=>AB2+AC2=BC2(định lí pytago đảo) 

=> tam giác ABC là tam giác vuông tại A 

Chúc bạn học tốt!!! 

a, Ta có :

 \(AB^2+AC^2=3^2+4^2=9+16=25\)

\(BC^2=5^5=25\)

Vì AB^2 + AC^2 = BC^2 

=> \(\Delta\)ABC là tam giác vuông tại A ( Pi - ta - go đảo )

b, Xét \(\Delta\)ABH và \(\Delta\)DBH ta có 

^A = ^D = 900

AB = BD (gt)

=> \(\Delta\)ABH = \(\Delta\)DBH (ch-cgv)

=> ^HBD = ^ABH (tương ứng)

Vậy BH là p/g ^ABH 

7 tháng 5 2015

a)Ta có: BC2 = 52 = 25

AB2 + AC2 = 32 + 42 = 25

Vì AB2 + AC2 = BC2

=> Tam giác ABC vuông tại  A (Theo định lí py-ta-go đảo).

b) Xét tam giác ABH và tam giác DBH có:

Gc A = Gc D(=900)

AB=BD (gt)

HB cạnh huyền chung.

Do đó: tam giác ABH = tam giác DBH (ch-cgv)

=> Gc ABH = Gc HBD (2 góc tưng ứng)

=> BH là phân giác của Gc ABC

c) P/s: Bn viết sai đề thì phải. Tg ABC không thể cân. Mà Tg AMB hoặc Tg AMC mới cân.

Xét tg ABC vng tại A.(cm ở câu a)

Có AM là trung tuyến.

=> AM = BM = CM (Vì trung tuyến ứng vs cạnh huyền thì = nửa cạnh huyền)

=> Tg AMB hoặc Tg AMC cân.

 

 

 

 

20 tháng 1 2017

bạn học rùi à

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.a) Tam giác ABC là tam giác gì?Vì sao?b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cânBài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cma) Tính độ dài các cạnh AB,ACb) Chứng minh góc B > góc CBài 3 : Cho góc xOy có...
Đọc tiếp

Bài 1 : Cho tam giác ABC có AB = 3cm , AC= 4cm và BC = 5cm.

a) Tam giác ABC là tam giác gì?Vì sao?

b)Trên cạnh BC lấy điểm D sao cho BA=BD.Từ D vẽ Dx vuông góc với BC và cắt AC tại H.Chứng minh BH là tia phân giác góc ABC.

c)Vẽ trung tuyến AM.Chứng minh tam giác AMC cân

Bài 2 : Cho tam giác ABC vuông tại A có đường cao AH.Biết AH= 4cm,HB= 2cm,HC= 8cm

a) Tính độ dài các cạnh AB,AC

b) Chứng minh góc B > góc C

Bài 3 : Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.

a) Chứng minh tam giác AOM = tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB

b) Tam giác DMC là tam giác gì?Vì sao?

c) Chứng minh DM + AM < AC

Bài 4 : Cho tam giác ABC vuông tại C có góc A= 60 độ,phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc AB tại K (K thuộc A).Kẻ BD vuông góc AE tại D (D thuộc AE).Chứng minh

a) Tam giác ACE = tam giác AKE

b) AE là đường trung trực của đoạn thẳng CK

c) KA = KB

d) EB > EC

Bài 5 : Cho tam giác ABC vuông tại A,đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.

a) Chứng minh góc BAD = góc BDA

b) Chứng minh AD là tia phân giác của góc HAC

c) Vẽ DK vuông góc AC.Chứng minh AK = AH

d) Chứng minh AB + AC < BC + AH

Bài 6 : Cho tam giác ABC có AB = 6cm, AC = 8cm, BC= 10cm.Gọi K là trung điểm của đoạn thẳng BC,đường trung trực của đoạn thẳng BC cắt cạnh AC tại M. Gọi D là hình chiếu vuông góc của C trên đường thẳng BM.Chứng minh rằng :

a) Tam giác ABC vuông tại A 

b) AB = DC

c) Ba đường thẳng AB , MK ,CD cùng đi qua một điểm

Bài 7 : Cho tam giác ABC vuông tại A có AB < AC. Trên cạnh huyền BC lấy điểm K sao cho CK = CA.Vẽ CM vuông góc AK tại M.Vẽ AD vuông góc BC tại D.AD cắt CM tại H.Chứng minh: 

a) Tam giác MCK = tam giác MCA 

b) HK // AB

c) HD < HA

6
29 tháng 4 2019

1
B A H C M D

a) Xét \(\Delta\)ABC:AB2+AC2=9+16=25=BC2=>\(\Delta\)ABC vuông tại A

b) Xét \(\Delta\)ABH và\(\Delta\)DBH:

                  BAH=BDH=90

                  BH chung

                  AB=DB

=>\(\Delta\)ABH=\(\Delta\)DBH(cạnh huyền-cạnh góc vuông)=>ABH=DBH=>BH là tia phân giác góc ABC

c) Áp dụng Định lý sau:"trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác vuông ABC, ta có:AM=1/2BC=CM

Suy ra \(\Delta\)AMC cân tại M

29 tháng 4 2019

2.

C B A H

a) Áp dụng Định lý Pythagoras cho tam giác vuông ABH, ta có:

AB2=BH2+AH2=22+42=>AB=\(\sqrt{20}\)cm

Áp dụng Định lý Pythagoras cho tam giác vuông ACH, ta có:

AC2=AH2+CH2=42+82=>AC=\(\sqrt{80}\)cm

b) Xét \(\Delta\)ABC:AB<AC(Suy ra trực tiếp từ kết quả câu a)

Suy ra: B>C (Định lý về cạnh và góc đối diện trong tam giác)

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

bài 1:cho tam giac ABC có 3 góc nhọn,đường cao AH,Trên nửa mặt phẳng là đường thẳng AC có chứa điểm B,kẻ tia Cx//AB.Trên tia Cx lấy điểm d sao cho CD=AB.Kẻ DK vuông góc BC(K thuộc BC).Gọi O la trung điểm cua BC.Chứng minha.AH=DK                          b.3 điểm A,0,D thẳng hàngc.AC//BDbài2:cho tam giác ABC với độ dai 3 cạnh AB=3cm,BC=5cm,AC=4cma.Tam giắc ABC la tam giác gì:Vì saob.Trên cạnh BC...
Đọc tiếp

bài 1:cho tam giac ABC có 3 góc nhọn,đường cao AH,Trên nửa mặt phẳng là đường thẳng AC có chứa điểm B,kẻ tia Cx//AB.Trên tia Cx lấy điểm d sao cho CD=AB.Kẻ DK vuông góc BC(K thuộc BC).Gọi O la trung điểm cua BC.Chứng minh

a.AH=DK                          b.3 điểm A,0,D thẳng hàng

c.AC//BD

bài2:cho tam giác ABC với độ dai 3 cạnh AB=3cm,BC=5cm,AC=4cm

a.Tam giắc ABC la tam giác gì:Vì sao

b.Trên cạnh BC lấy điểm D sao cho BA =BD.Từ D vẽ Dx vuông góc với BC(Dx cắt AC tại H).c/m:BH la tia phân giác của góc BAc

c.Vẽ trung tuyến AM.C/m tam giác ABC cân

Bài 3:Cho tam giac ABC vuông tại A,phân giác BD.Kẻ DE vuông góc với BC(E thược BC).Gọi F là gaio điểm cua BA và ED.C/m rằng

a.AB=BE

b.Tam giac CDF là tam giắc cân

c.AE//CF

Bài 4:Cho tam giac ABC(AB=Ac),kẻ đường cao AH(H thuộc BC)

a.C/m rằng HB=HC và góc BAH = góc CAH

b.Từ h kẻ HD vuông góc với AB(D thuộc AB),kẻ HE vuông góc AC(E thuộc AC)

c.Giả sử AB = 10cm,BC = 16cm.Hãy tính độ dài AH

trắc nghiệm

ai có thời gian lam cho e với 

1
10 tháng 4 2017

Bài 1 ( bạn tự vẽ hình nha)

a, Vì AB // Cx nên góc ABC= góc BCD( hai góc so le trong)

    Xét tam giác ABH vuông tại h và tam giác DCK vuông tại k có:

                              AB=CD( gt)

                         góc ABH= gócDCK

Nên tam giác ABH= tam giác DCK

   nên AH=DK(đpcm)

b, Xét tam giác ABC và tam giác DCB có: 

                  AB=CD( gt)

            góc ABC= góc BCD (cmt)

                  BC chung

Nên tam giác ABC= tam giác DCB

    nên góc ACB = góc CBD

     mà góc ACB và góc CBD là 2 góc so le trong

Nên AC // BD ( đpcm)

c, Vì O là trung điểm của BC

Nên AO là đường trung tuyến                             (1)

Vì O là trung điiểm của BC

Nên DO là đường trung tuyến của BC                  (2)

Từ (1) và (2) ta được A, O, D thẳng hàng