K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

A B C D H M x

a) Ta có: BC2 = 52 = 25

AB2 + AC2 = 32 + 42 = 9 + 16 = 25

Suy ra: BC2 = AB2 + AC2

Do đó: \(\Delta ABC\) vuông tại A.

b) Xét hai tam giác vuông ABH và DBH có:

AB = BD (gt)

BH: cạnh huyền chung

Vậy: \(\Delta ABH=\Delta DBH\left(ch-cgv\right)\)

Suy ra: \(\widehat{ABH}=\widehat{DBH}\) (hai góc tương ứng)

Do đó: BH là tia phân giác của \(\widehat{ABC}\).

c) Ta có: AM = MB = MC = \(\dfrac{1}{2}.BC=\dfrac{1}{2}.5=\dfrac{5}{2}\) (cm) (theo định lí đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền)

Do đó: \(\Delta ABM\) cân tại M (đpcm).

9 tháng 4 2019

A, 

xét \(\Delta ABD\)và \(\Delta ACD\)

CÓ \(\hept{\begin{cases}AB=AC\\chungAD\\BD=DC\end{cases}}\)

SUY RA \(\Delta ABD\)=\(\Delta ACD\) (C.C.C)  (1)

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)

MÀ \(\widehat{BDA}\)+\(\widehat{CDA}\)=180

=> \(\widehat{BDA}\)=\(\widehat{CDA}\)=90

B,  (1) => BC=DC=1/2 BC=8

ÁP DỤNG ĐỊNH LÍ PITAGO TA CÓ

\(AB^2=AD^2+BD^2\)

=> AD^2=36

=>AD=6

9 tháng 4 2019

c, vì M là trọng tâm nên AM=2/3AD=4

d

29 tháng 3 2016

a.Xét tam giác ABC vuông tại B :

BC2=BA2+CA2

152=82+CA2

=> CA2=152-82=225-64

=>CA2=161

=>CA=căng 161

  1.  
17 tháng 4 2017
Cho tam giác ABC,Trên tia đối của tia BA lấy điểm D sao cho BD = BA,Trên cạnh BC lấy điểm E sao cho BE = 1/3BC,Gọi K là giao điểm của AE và CD,Chứng minh DK = KC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7
18 tháng 4 2017

ai giup minh cau 2a khg

chiu nay co kiem tra rui

giup minh vskhocroikhocroikhocroi

56 phút trước

a. xét △ABD và △EBD có:

BA = BE (giả thiết); \(\widehat{ABD}=\widehat{EBD}\left(gt\right)\); BD là cạnh chung

⇒ △ABD = △EBD (c;g;c)

b. vì △ABD = △EBD nên \(\widehat{BAD}=\widehat{BED}=90^0\) (2 góc tương ứng)

⇒ DE ⊥ BC

a: \(\widehat{HAB}=90^0-60^0=30^0\)

b: Xét ΔAHI và ΔADI có

AH=AD

HI=DI

AI chung

Do đó: ΔAHI=ΔADI

Ta có: ΔAHD cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

c: Xét ΔAHK và ΔADK có

AH=AD

\(\widehat{HAK}=\widehat{DAK}\)

AK chung

Do đó: ΔAHK=ΔADK

Suy ra: \(\widehat{AHK}=\widehat{ADK}=90^0\)

=>DK//AB