K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

a, Sử dụng định lí Pytago cho các tam giác vuông HAB và HAC để có đpcm

b, 1. Chứng minh tương tự câu a)

2. Sử dụng định lí Pytago cho tam giác vuông AHM

5 tháng 6 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ đường kính BB’. Nối B’A, B’D, B’C.

Ta có:Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 90° ( góc nội tiếp chắn nửa đường tròn)

⇒ AC // B'D ( cùng vuông góc với BD)

Suy ra, tứ giác ADB’C là hình thang

Vì ADB’C nội tiếp đường tròn (O) nên ADB’C là hình thang cân

⇒ CD = AB'

⇒  A B 2 + C D 2 = A B 2 + A B ' 2

Mà tam giác BAB’ vuông tại A do Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 = 90° ( góc nội tiếp chắn nửa đường tròn)

⇒  A B 2 + C D 2 = A B 2 + A B ' 2 = 2 R 2 = 4 R 2  (đpcm)

21 tháng 1 2016

ko làm đc! tui mới lớp 6 thui

21 tháng 6 2017

b) Vì AHIO là hình bình hành nên OI = AH = 2OM

Gọi P là trung điểm OC PJ là trung trực OC PJ OC.

Có OM là trung trực BC OM BC. Suy ra

Δ O J P ~ Δ O C M ( g . g ) ⇒ O J O C = O P O M ⇒ O J . O M = O C . O P ⇒ O J .2 O M = O C .2 O P ⇒ O J . O I = O C . O C = R 2

27 tháng 5 2018

a) Ta có \(\widehat{BNC}=\widehat{BMC}=90độ\)(gt)

Nên tứ giác BNMC nội tiếp (2 đỉnh N,M cùng BC với 2 góc bằng nhau)

(Câu sau không rõ. Cái gì là tâm đường tròn nội tiếp ΔMNH?)

b) Xét ΔAMN và ΔABC có:

\(\widehat{BAC}\)chung

\(\widehat{AMN}=\widehat{ABC}\)(tứ giác BNMC nội tiếp)

Do đó ΔAMN ~ ΔABC

Nên\(\frac{AM}{AB}=\frac{AN}{AC}\)

hay AM.AC=AN.AB

Ta có \(\widehat{ANH}=\widehat{AMH}=90độ\left(gt\right)\)

Nên \(\widehat{ANH}+\widehat{AMH}=180độ\)

Suy ra tứ giác ANHM nội tiếp

Do đó \(\widehat{NAM}+\widehat{NHM}=180độ\)

\(\widehat{NHM}=\widehat{BHC}\)(đối đỉnh)

    \(\widehat{BHC}=\widehat{BLC}\)(tính chất đối xứng trục)

Nên \(\widehat{NAM}+\widehat{BLC}=180độ\)

Suy ra tứ giác ABLC nội tiếp đường tròn (O) (tổng 2 góc đối bằng 180độ)

c) (Câu này hình như bạn ghi sai đề rồi, nếu I là giao điểm AH với AN thì I sẽ trùng với A. Nên mình nghĩ I là giao điểm MN với AH)

Ta có \(\widehat{HDC}=\widehat{HMC}=90độ\left(gt\right)\)

Nên \(\widehat{HDC+}\widehat{HMC}=180độ\)

Do đó tứ giác HMCD nội tiếp

Suy ra \(\widehat{HMD}=\widehat{HCD}\)

\(\widehat{HCD}=\widehat{HMN}\)(tứ giác BMNC nội tiếp)

Nên \(\widehat{HMD}=\widehat{HMN}\)

Vậy MH là phân giác \(\widehat{NMD}\)

Mà MH vuông góc AM (gt)

Nên AM là phân giác ngoài

Do đó \(\frac{IH}{ID}=\frac{AH}{AD}\)

hay IH.AD=AH.ID

a.Ta có :
ˆAFH=ˆADB=90o→ΔAFH∼ΔADB(g.g)

→AFAD=AHAB→AF.AB=AH.AD

Tương tự AH.AD=AE.AC→AF.AB=AE.AC

b.Ta có  :
ˆHFA=ˆHEA=ˆHFB=ˆHDB=90o

→AEHF,AEDB,FHDB nội tiếp

→ˆHFE=ˆFAE=ˆHBD=ˆHFD

→FH là phân giác ˆDFE
Mà FA⊥FH→FA là phân giác góc ngoài tại đỉnh F của ΔDEF

→HIHD=FIFD=AIAD

→IH.AD=AI.DH