K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. cho tam giác ABC. trên nửa mặt phẳng chứa đỉnh C có bờ là đường thẳng AB ta dựng đoạn thẳng AE vuông góc với AB và AE = AB. trên nửa mặt phẳng chứa đỉnh B có bờ là đường thẳng AC ta dựng đoạn thẳng AF vuông góc với AC và AF = AC. đường thẳng EF cắt đường cao AD của tam giác ABC ở M. vẽ AH vuông góc EF cắt BC ở K ( H thuộc EF )a) tam giác ACK = tam giác FAM b) M là trung điểm EFc) FB vuông...
Đọc tiếp

1. cho tam giác ABC. trên nửa mặt phẳng chứa đỉnh C có bờ là đường thẳng AB ta dựng đoạn thẳng AE vuông góc với AB và AE = AB. trên nửa mặt phẳng chứa đỉnh B có bờ là đường thẳng AC ta dựng đoạn thẳng AF vuông góc với AC và AF = AC. đường thẳng EF cắt đường cao AD của tam giác ABC ở M. vẽ AH vuông góc EF cắt BC ở K ( H thuộc EF )

a) tam giác ACK = tam giác FAM 

b) M là trung điểm EF

c) FB vuông góc với EC và FB = EC

2. cho tam giác ABC vuông tại A. AH là đường cao. đường phân giác góc B. góc C cắt nhau tại I ; đường phân giác góc B và BAH cắt nhau tại M ; đường phân giác góc C và góc CAH cắt nhau tại N. đường thẳng MN cắt AB,AC theo thứ tự tại B' và C'

a) CM I là trực tâm tam giác AMN

b) có kết luận gì về tam giác AB'C'

4
17 tháng 4 2018

a) Xét tam giác ACK và tam giác FAM có :

AC = FA

\(\widehat{CAK}=\widehat{AFM}\)  (Cùng phụ với góc \(\widehat{FAK}\)  )

\(\widehat{ACK}=\widehat{FAM}\)   (Cùng phụ với góc \(\widehat{DAC}\)  )

\(\Rightarrow\Delta ACK=\Delta FAM\left(g-c-g\right)\)

b) Do \(\Delta ACK=\Delta FAM\left(cma\right)\Rightarrow FM=AK\)

Chứng minh hoàn toàn tương tự câu a ta có: \(\Delta ABK=\Delta EAM\left(g-c-g\right)\)

\(\Rightarrow ME=AK\)

Từ đó suy ra FM = ME hay M là trung điểm EF.

c) Kéo dài FB cắt EC tại J. Ta chứng minh \(\widehat{FJE}=90^o\)

Xét tam giác FAB và tam giác CAE có:

FA = CA

AB = AE

\(\widehat{FAB}=\widehat{CAE}\)   (Cùng phụ với góc \(\widehat{BAC}\)  )

\(\Rightarrow\Delta FAB=\Delta CAE\left(c-g-c\right)\)

\(\Rightarrow FB=CE\) và \(\widehat{AFB}=\widehat{ACE}\)

Xét tứ giác AFJE có:

\(\widehat{AFJ}+\widehat{FJE}+\widehat{JEA}+\widehat{EAF}=360^o\)

\(\Rightarrow\widehat{ACE}+\widehat{FJE}+\widehat{CEA}+\widehat{EAC}+90^o=360^o\)

\(\Rightarrow\widehat{FJE}+\widehat{ACE}+\widehat{CEA}+\widehat{EAC}=270^o\)

\(\Rightarrow\widehat{FJE}+180^o=270^o\)

\(\Rightarrow\widehat{FJE}=90^o\)

Vậy nên \(FB\perp EC\) (đpcm).

17 tháng 4 2018

Bài 2:

A B C H I M N B' C' D E

a) Gọi giao điểm của đường phân giác ^ABC và ^ACB với AC và AB lần lượt là E và D

Dễ thấy: ^BAH=^ACB (Cùng phụ với ^HAC) => 1/2. ^BAH = 1/2. ^ACB

=> ^DAM=^ACD. Mà ^DAM+^MAC=^BAC=900 => ^ACD+^MAC=900 => AM \(\perp\)CD

hay NI\(\perp\)AM. 

Tương tự ta chứng minh MI\(\perp\)AN

Xét tam giác MAN: NI\(\perp\)AM; MI\(\perp\)AN => I là trực tâm của tam giác MAN (đpcm).

b) Do I là trực tâm của tam giác AMN (cmt) => AI\(\perp\)MN hay AI\(\perp\)B'C'

Ta có: Tam giác ABC có 2 đường phân giác ^ABC và ^ACB cắt nhau tại I => AI là phân giác ^BAC

=> AI là phân giác ^B'AC'.

Xét tam giác AB'C': AI là phân giác ^B'AC'. Mà AI\(\perp\)B'C' => Tam giác AB'C' cân tại A

 Lại có: ^B'AC'=900 => Tam giác B'AC' vuông cân tại A.

19 tháng 4 2018

đáp án là:fb_/ec(đpcm).

27 tháng 11 2015

A C B E F D

hink nè bạn 

27 tháng 11 2015

ok chưa điễm quỳnh

 

19 tháng 4 2018
DA vuong goc voi FH
1 tháng 12 2020
DA vuông góc với FH