\(^{\left|3\overrightarrow{HA}-2\overrigh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

Mệnh đề C sai.

Xét:

A. Đúng

Vẽ hbh ABDC => \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|\overrightarrow{AD}\right|=AD\) (\(=2AH\))

Ta lại có, \(\Delta ABH\) vuông tại H, theo Pytago:

\(AH=\sqrt{AB^2-\frac{AB^2}{4}}=\frac{3\sqrt{3}}{2}\) \(\Rightarrow AD=3\sqrt{3}\)

B. Đúng

Vẽ hình vuông AECH\(\Rightarrow\) AEHB là hbh

Ta có:

\(\left|\overrightarrow{BA}+\overrightarrow{BH}\right|=\left|\overrightarrow{BA}+\overrightarrow{AE}\right|=\left|\overrightarrow{BE}\right|=BE\)

Ta lại có, \(\Delta BCE\) vuông tại C, theo Pytago:

\(BE=\sqrt{BC^2+CE^2}=\sqrt{BC^2+AH^2}=\frac{\sqrt{63}}{2}\)

C. Sai

Vẽ hbh AFHC \(\Rightarrow\)AFBH là hình vuông

\(\Rightarrow\left|\overrightarrow{HA}+\overrightarrow{HB}\right|=\left|\overrightarrow{HA} +\overrightarrow{AF}\right|=HF\) \(=AC=3\)

D. Đúng

\(\left|\overrightarrow{HA}-\overrightarrow{HB}\right|=\left|\overrightarrow{BA}\right|=BA=3\)

23 tháng 10 2018

a) gọi I là trung điểm của đoạn thẳng AB

=> IA+ IB=0

| 2MI|= |BA|

|MI|= 1/2|BA|

=> M thuộc đường tròn tâm I, bán kính =1/2 BA

23 tháng 10 2018

B) gọi G là trọng tâm của tam giác ABC

=> GA+ GB+ GC=0

gọi I là trung điểm của đoạn thẳng AB

=> IA+ IB=0

| 3MG|= 3/2| 2 MI|

3| MG|= 3| MI|

| MG|= | MI|

=> M thuộc đường trung trực của đoạn thẳng GI

31 tháng 10 2019

Akai Haruma

6 tháng 11 2020

d, Lấy P, Q sao cho \(4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0};2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}=\overrightarrow{0}\)

Ta có \(\left|4\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|4\text{ }\overrightarrow{MP}+4\overrightarrow{PA}-\overrightarrow{PB}+\overrightarrow{PC}\right|=\left|4\overrightarrow{MP}\right|=4MP\)

\(\left|2\overrightarrow{MA}-\overrightarrow{MB}-\overrightarrow{MC}\right|=\text{ }\left|2\overrightarrow{QA}-\overrightarrow{QB}-\overrightarrow{QC}\right|=0\)

\(\Rightarrow4MP=0\Rightarrow M\equiv P\)

6 tháng 11 2020

Gọi G là trọng tâm tam giác, I là trung điểm BC, N là trung điểm của AC

a, Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\)

\(\frac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\frac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\)

\(\Rightarrow MG=MI\Rightarrow M\) thuộc đường trung trực của BC

b, \(\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\left|2\overrightarrow{MN}\right|=2MN\)

\(\left|\overrightarrow{MA}-\overrightarrow{MB}\right|=\left|\overrightarrow{BA}\right|=BA\)

\(\Rightarrow2MN=BA\Rightarrow M\in\left(N;\frac{BA}{2}\right)\)