\(2\overrightarrow{IB}+3\overrightarrow{IC}=\overr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1. a. Cho tam giác ABC. Có I,J,K,L xác định sao cho: 1. \(\overrightarrow{IA}\) - \(\overrightarrow{IB}\) +3\(\overrightarrow{IC}\) =\(\overrightarrow{0}\) 2. \(\overrightarrow{KA}\) +\(\overrightarrow{KB}\) -\(\overrightarrow{KC}\) =\(\overrightarrow{0}\) 3. 2\(\overrightarrow{JA}\) + \(\overrightarrow{JB}\) +\(\overrightarrow{JC}\) =\(\overrightarrow{0}\) 4. \(\overrightarrow{LA}\) +\(\overrightarrow{LB}\) +3\(\overrightarrow{LC}\)...
Đọc tiếp

Bài 1. a. Cho tam giác ABC. Có I,J,K,L xác định sao cho:

1. \(\overrightarrow{IA}\) - \(\overrightarrow{IB}\) +3\(\overrightarrow{IC}\) =\(\overrightarrow{0}\)

2. \(\overrightarrow{KA}\) +\(\overrightarrow{KB}\) -\(\overrightarrow{KC}\) =\(\overrightarrow{0}\)

3. 2\(\overrightarrow{JA}\) + \(\overrightarrow{JB}\) +\(\overrightarrow{JC}\) =\(\overrightarrow{0}\)

4. \(\overrightarrow{LA}\) +\(\overrightarrow{LB}\) +3\(\overrightarrow{LC}\) =\(\overrightarrow{0}\)

Biểu diễn \(\overrightarrow{AI}\), \(\overrightarrow{AJ}\), \(\overrightarrow{BK}\) ,\(\overrightarrow{BL}\) theo \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)

b. Với giải thiết cho như câu a. CMR:

1. với mọi O ta có \(\overrightarrow{OI}\)= \(\frac{1}{3}\)\(\overrightarrow{OA}\) + \(\overrightarrow{OC}\) - \(\frac{1}{3}\)\(\overrightarrow{OC}\)

2. với mọi O ta có \(\overrightarrow{OK}\) = \(\overrightarrow{OA}\) + \(\overrightarrow{OB}\) -\(\overrightarrow{OC}\)

3. với mọi O ta có \(\overrightarrow{OJ}\)= \(\frac{1}{2}\)\(\overrightarrow{OA}\) +\(\frac{1}{4}\)\(\overrightarrow{OB}\) + \(\frac{1}{4}\)\(\overrightarrow{OC}\)

4. với mọi O ta có \(\overrightarrow{OL}\)= \(\frac{1}{5}\)\(\overrightarrow{OA}\) + \(\frac{1}{5}\)\(\overrightarrow{OB}\) + \(\frac{3}{5}\)\(\overrightarrow{OC}\)

Bài 2. Cho tam giác ABC. Gọi I,J xác định sao cho \(\overrightarrow{IC}\) = \(\frac{3}{2}\)\(\overrightarrow{BI}\) ; \(\overrightarrow{JB}\) = \(\frac{2}{5}\)\(\overrightarrow{JC}\)

a. Tính \(\overrightarrow{AI}\),\(\overrightarrow{AJ}\) theo \(\overrightarrow{a}\)= \(\overrightarrow{AB}\), \(\overrightarrow{b}\)= \(\overrightarrow{AC}\)

b. Tính \(\overrightarrow{IJ}\) theo \(\overrightarrow{a}\),\(\overrightarrow{b}\)

Bài 3. Cho tam giác ABC, gọi I là điểm sao cho 3\(\overrightarrow{IA}\)-\(\overrightarrow{IB}\)+2\(\overrightarrow{IC}\)=\(\overrightarrow{0}\). Xác định giao điểm của

a. AI và BC

b. IB và CA

c. IC và AB

0
NV
27 tháng 10 2020

a.

\(\overrightarrow{IA}+2\left(\overrightarrow{IA}+\overrightarrow{AB}\right)=\overrightarrow{0}\Leftrightarrow3\overrightarrow{IA}+2\overrightarrow{AB}=0\)

\(\Leftrightarrow\overrightarrow{AI}=\frac{2}{3}\overrightarrow{AB}\)

Vậy I là điểm nằm trên đoạn thẳng AB sao cho \(AI=\frac{2}{3}AB\)

b.

Gọi G là trọng tâm tam giác ABC

\(\overrightarrow{KG}+\overrightarrow{GA}+2\left(\overrightarrow{KG}+\overrightarrow{GB}\right)=\overrightarrow{CG}+\overrightarrow{GB}\)

\(\Leftrightarrow3\overrightarrow{KG}+\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\Leftrightarrow3\overrightarrow{KG}=\overrightarrow{0}\)

\(\Leftrightarrow\) K trùng G hay K là trọng tâm tam giác

c.

\(\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+2\left(\overrightarrow{MG}+\overrightarrow{GC}\right)=0\)

\(\Leftrightarrow4\overrightarrow{MG}+\overrightarrow{GC}=0\Leftrightarrow\overrightarrow{GM}=\frac{1}{4}\overrightarrow{GC}\)

Vậy M là điểm nằm trên đoạn thẳng CG sao cho \(GM=\frac{1}{4}CG\)

30 tháng 9 2019

a/ \(\Leftrightarrow\overrightarrow{IA}+3\overrightarrow{BI}+\overrightarrow{CA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{BA}+2\overrightarrow{BI}+\overrightarrow{CA}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{BI}=\overrightarrow{AC}+\overrightarrow{AB}\)

nhận thấy \(\overrightarrow{AC}+\overrightarrow{AB}=2\overrightarrow{AK}\) (K là TĐ của BC)

\(\Rightarrow\overrightarrow{BI}=\overrightarrow{AK}\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BI}\uparrow\uparrow\overrightarrow{AK}\\\left|\overrightarrow{BI}\right|=\left|\overrightarrow{AK}\right|\end{matrix}\right.\)

Câu này tôi chọn K ko liên quan j tới câu c hết

b/ \(\Leftrightarrow\overrightarrow{BA}=2\overrightarrow{CJ}\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BA}\uparrow\uparrow2\overrightarrow{CJ}\\BA=2CJ\end{matrix}\right.\)

c/ \(\Leftrightarrow\overrightarrow{KA}+2\overrightarrow{KB}+2\overrightarrow{BC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{KA}=2\overrightarrow{CK}\Rightarrow...\)

12 tháng 5 2017

a)Giả sử điểm K thỏa mãn:
\(\overrightarrow{KA}+2\overrightarrow{KB}=\overrightarrow{CB}\)\(\Leftrightarrow\overrightarrow{KB}+\overrightarrow{BA}+2\overrightarrow{KB}=\overrightarrow{CB}\)
\(\Leftrightarrow3\overrightarrow{KB}=\overrightarrow{CB}-\overrightarrow{BA}\)
\(\Leftrightarrow\overrightarrow{KB}=\overrightarrow{CB}+\overrightarrow{AB}\).
Xác định: \(\overrightarrow{CB}+\overrightarrow{AB}\).
A B C D
Lấy điểm D sao cho B là trung điểm của DC.
\(\overrightarrow{CB}+\overrightarrow{AB}=\overrightarrow{BD}+\overrightarrow{AB}=\overrightarrow{AD}\).
Điểm K xác định sao cho : \(\overrightarrow{KB}=\overrightarrow{AD}\) hay tứ giác AKBD là hình bình hành.
A B C D K

12 tháng 5 2017

b) Gọi G là trọng tâm tam giác ABC.
Ta có \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+2\overrightarrow{MG}\)\(+2\overrightarrow{GC}\)
\(=4\overrightarrow{MG}+\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)+\overrightarrow{GC}\)
\(=4\overrightarrow{MG}+\overrightarrow{GC}\).
Giả sử điểm M thỏa mãn:
\(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}\Leftrightarrow4\overrightarrow{MG}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{MG}=\dfrac{\overrightarrow{CG}}{4}\).
Điểm M được xác định để \(\overrightarrow{MG}=\dfrac{\overrightarrow{CG}}{4}\).
A B C G T M
Gọi T là trung điểm của AB nên \(\overrightarrow{CG}=2\overrightarrow{GT}\).
Vì vậy điểm M được xác định là trung điểm của GT.

9 tháng 10 2019

a) Ta có:

\(3\overrightarrow{IA}+2\overrightarrow{IC}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IC}\)

\(\Leftrightarrow3\overrightarrow{IA}=-2\left(\overrightarrow{IA}-\overrightarrow{CA}\right)\)

\(\Leftrightarrow3\overrightarrow{IA}=-2\overrightarrow{IA}+2\overrightarrow{CA}\)

\(\Leftrightarrow3\overrightarrow{IA}+2\overrightarrow{IA}=2\overrightarrow{CA}\)

\(\Leftrightarrow5\overrightarrow{IA}=2\overrightarrow{CA}\)

\(\Leftrightarrow\overrightarrow{IA}=\frac{2}{5}\overrightarrow{CA}\)