K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

ΔB'AB nội tiếp

BB' là đường kính

Do đó: ΔB'AB vuông tại A

Suy ra: B'A\(\perp\)BA

hay CH//A'B'

Xét (O) có

ΔB'CB nội tiếp

BB' là đường kính

Do đó: ΔB'CB vuông tại C

=>B'C\(\perp\)BC

hay B'C//AH

Xét tứ giác AHCB' có

AH//CB'

AB'//CH

Do đó:AHCB' là hình bình hành

Suy ra: \(\overrightarrow{AH}=\overrightarrow{B'C}\)

Xét (O) có

ΔB'AB nội tiếp

BB' là đường kính

Do đó: ΔB'AB vuông tại A

Suy ra: B'A\(\perp\)BA

hay CH//A'B'

Xét (O) có

ΔB'CB nội tiếp

BB' là đường kính

Do đó: ΔB'CB vuông tại C

=>B'C\(\perp\)BC

hay B'C//AH

Xét tứ giác AHCB' có

AH//CB'

AB'//CH

Do đó:AHCB' là hình bình hành

Suy ra: \(\overrightarrow{AH}=\overrightarrow{B'C}\)

12 tháng 8 2021

Xem lại đề

12 tháng 8 2021

đúng nha bạn

4 tháng 8 2019

A B C H B' O

Xét B thuộc đường tròn (O), B' đối xứng với B qua O => BB' là đường kính của (O)

=> AB' vuông góc AB. Mà CH vuông góc AB nên AB' // CH. Tương tự AH // B'C

Suy ra tứ giác AHCB' là hình bình hành => AH // B'C và AH = B'C => \(\overrightarrow{AH}=\overrightarrow{B'C}\)(đpcm).

12 tháng 8 2021

Hình bạn tự vẽ nhé. 

Ta có: B' là điểm đối xứng của B qua O( tâm đường tròn ngoại tiếp tam giác ABC) \(\Rightarrow BB'\) là đường kính của đường tròn ngoại tiếp tam giác ABC \(\Rightarrow\Lambda BAB'\) và \(\Lambda BCB'\) là góc chắn nửa đường tròn ( đường tròn ngoại tiếp tam giác ABC) \(\Rightarrow\left\{{}\begin{matrix}AB'\perp AB\\B'C\perp BC\end{matrix}\right.\) Mà \(\left\{{}\begin{matrix}HC\perp AB\\AH\perp BC\end{matrix}\right.\) ( do H là trực tâm của tam giác ABC) \(\Rightarrow\left\{{}\begin{matrix}AB'//HC\\AH//B'C\end{matrix}\right.\) \(\Rightarrow\) AB'CH là hình bình hành \(\Rightarrow\left\{{}\begin{matrix}AH//B'C\\AH=B'C\end{matrix}\right.\) \(\Rightarrowđpcm\)

12 tháng 10 2021

Gọi BE, CF, AN là đường cao của TAM GIÁC ABC

Vì BE//DC⇒BH//DC(1)

CF//BD⇒CD//BH(2)

Từ (1)và(2)⇒BHCD là hình bình hành