K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

Ôn tập góc với đường tròn

Mình chỉ giải đến câu c nha, câu d đang í ẹ chưa nghĩ ra

a, (O;R) có: \(\widehat{BMC}=\widehat{BNC}=90^o\)( góc nội tiếp chắn nửa đường tròn)

Tứ giác AMHN có: \(\widehat{AMH}+\widehat{ANH}=90^o+90^o=180^o\) nên tứ giác AMHN nội tiếp đường tròn có tâm là trung điểm của AH, đường kính AH

b, \(\Delta ABC\) có: BN, CM là đường cao, \(BN\cap CM=\left\{H\right\}\) nên H là trực tâm \(\Rightarrow AD\perp BC\)

Xét \(\Delta ADB\)\(\Delta CMB\) có:

\(\widehat{ADB}=\widehat{CMB}=90^o\)

\(\widehat{BAD}=\widehat{BCM}\) (cùng phụ \(\widehat{MBC}\))

\(\Rightarrow\Delta ADB\sim\Delta CMB\left(g-g\right)\Rightarrow\frac{BD}{BA}=\frac{BM}{BC}\Leftrightarrow BD.BC=BM.BA\)c, \(\Delta ADC\) có: \(\widehat{ADC}=90^o\Rightarrow AC^2=AD^2+DC^2\) (định lý Py-ta-go) hay \(4a^2=AD^2+a^2\Leftrightarrow AD=a\sqrt{3}\)

\(\Delta ABC\) đều có AD, BN, CM là đường cao nên là trung tuyến

\(\Delta ABC\) đều có AD, BN, CM là trung tuyến, \(AD\cap BN\cap CM=\left\{H\right\}\) nên H là trọng tâm \(\Rightarrow AH=\frac{2}{3}AD\Leftrightarrow AH=\frac{2a\sqrt{3}}{3}\)

Gọi E là tâm đường tròn ngoại tiếp tứ giác AMHN \(\Rightarrow AE=EH=\frac{a\sqrt{3}}{3}\)

Chu vi đường tròn ngoại tiếp tứ giác AMHN là \(C=\frac{2a\sqrt{3}}{3}\pi\)

9 tháng 8 2016

cho tam giác ABC vuông cân tại B.Trên cạnh BA và BC lấy hai điểm E và F sao cho BE = BF.Qua B và E kẻ đường vuông góc với AF,chúng cắt AC lần lượt ở I và K. EK cắt BC tại H
a)Chứng minh tam giác AHC cân
b)chứng minh I là trung điểm KC
c)Gọi M,N,P lần lượt là trung điểm EC,AF,EF

29 tháng 5 2021

A B C H M N

a, Vì HM là đường cao => \(HM\perp AB\)=> ^HMA = 900

Vì HN là đường cao => \(HN\perp AC\)=> ^HNA = 900

Xét tứ giác AMHN có : 

^HMA + ^HNA = 900

mà ^HMA ; ^HNA đối nhau 

Vậy tứ giác AMHN nội tiếp

29 tháng 5 2021

b, Xét tam giác ABH vuông tại H, đường cao HM ta có : 

\(AH^2=AM.AB\)(1)

Xét tam giác ACH vuông tại H, đường cao HN ta có : 

\(AH^2=AN.AC\)(2) 

từ (1) ; (2) suy ra : \(AM.AB=AN.AC\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

Xét tam giác AMN và tam giác ACB ta có : 

^A chung 

\(\frac{AM}{AC}=\frac{AN}{AB}\)( cmt )

Vậy tam giác AMN ~ tam giác ACB ( c.g.c )

23 tháng 4 2018

a, HS tự chứng minh

b, HS tự chứng minh

c, DAEH vuông nên ta có: KE = KA = 1 2 AH

=> DAKE cân tại K

=>  K A E ^ = K E A ^

DEOC cân  ở O =>  O C E ^ = O E C ^

H là trực tâm => AH  ^ BC

Có  A E K ^ + O E C ^ = H A C ^ + A C O ^ = 90 0

(K tâm ngoại tiếp) => OE ^ KE

d, HS tự làm