Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
góc BDC=góc BEC=1/2*sđ cung BC=90 độ
=>CD vuông góc AB và BE vuông góc AC
Xét ΔABC có
CD,BE là đường cao
CD cắt BE tại H
=>H là trực tâm
=>AH vuông góc BC
b: góc AEH+góc ADH=180 độ
=>AEHD nội tiếp đường tròn đường kính AH
=>I là trung điểm của AH
c: góc BDC=góc BEC=90 độ
=>BDEC nội tiếp đường tròn đường kính BC
=>O là trung điểm của BC
d: ID=IE
OD=OE
=>OI là trung trực của DE
=>OI vuông góc DE
A B C D E F H O
a) Ta có \(\widehat{BEC},\widehat{BFC}\) là 2 góc nội tiếp chắn nửa đường tròn\(\Rightarrow\widehat{BEC}=\widehat{BFC}=90^0\Rightarrow\widehat{HFA}=\widehat{AEH}=90^0\)
Xét tứ giác AEHF có \(\widehat{HFA}+\widehat{AEH}=90^0+90^0=180^0\)
Suy ra tứ giác AEHF nội tiếp hay 4 điểm A,E,H,F cùng thuộc đường tròn tâm O
b) Ta có \(\widehat{BEC}=\widehat{BFC}=90^0\) Suy ra tứ giác BFEC nội tiếp \(\Rightarrow\widehat{AEF}=\widehat{ABC}\)
Mà \(\widehat{AFE}=\widehat{AEF}\)
Suy ra \(\widehat{AFE}=\widehat{ABC}\)\(\Rightarrow\widehat{AHE}=\widehat{ACB}\Rightarrow\widehat{HAE}=\widehat{EBD}=\widehat{DEB}\)
Suy ra DE là tiếp tuyến của (O)
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>CD\(\perp\)DB tại D
=>CD\(\perp\)AB tại D
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE\(\perp\)EC tại E
=>BE\(\perp\)AC tại E
Xét ΔABC có
BE,CD là đường cao
BE cắt CD tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC
c: Theo câu b, ta được: H là tâm đường tròn ngoại tiếp ngũ giác DEKFO
OH vuông góc MN
=>MN là đường kính của (H)
=>HM=HN