Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ Ax là tiếp tuyến tại A với (O).
Có: xABˆ=ACBˆ(=12sđAB⌢)
Xét ΔvABDΔvABD, có:
BACˆBAC^: chung;
⇒ΔvABD∼ΔvACE(gn)⇒ΔvABD∼ΔvACE(gn)
⇒ABAD=AEAC⇒ABAD=AEAC
mà BACˆBAC^ chung
⇒ΔADE∼ΔABC(cgc)⇒ΔADE∼ΔABC(cgc)
⇒AEDˆ=ACBˆ=xABˆ⇒AED^=ACB^=xAB^(ở vị trí SLT)
⇒Ax//DE
mà Ax⊥OA NÊN DE⊥OA
Ta có: AM là đường cao thứ 3( đi qua trực tâm H)
Xét ΔBMHΔBMH và ΔBDCΔBDC có:
BMHˆ=BDCˆ(=900)BMH^=BDC^(=900)
BˆB^ chung
⇒ΔBMH≈ΔBDC(g−g)⇒ΔBMH≈ΔBDC(g−g)
⇒BMBD=BHBC⇒BMBD=BHBC⇔BD.BH=BM.BC(1)⇔BD.BH=BM.BC(1)
Xét ΔCMHΔCMH và ΔCEBΔCEB có:
CMHˆ=CEBˆ(=900)CMH^=CEB^(=900)
CˆC^ chung
⇒ΔCMH=ΔCEB(g−g)⇒ΔCMH=ΔCEB(g−g)
⇒CMCH=CECB⇔CH.CE=BC.CM(2)⇒CMCH=CECB⇔CH.CE=BC.CM(2)
Cộng (1) và (2) vế theo vế, ta được:
BD.BH+CH.CE=BM.BC+BC.CMBD.BH+CH.CE=BM.BC+BC.CM
⇒BD.BH+CH.CE=BC.(BM+CM)=BC2(đpcm)⇒BD.BH+CH.CE=BC.(BM+CM)
=BC2(đpcm)
trong tam giac vuong ABH Cco \(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\)
AHC co \(AH^2+HC^2=AC^2\Rightarrow AH^2=AC^2-HC^2\left(2\right)\)
tu (1) va(2 ) suy ra \(AB^2-BH^2=AC^2-HC^2\Rightarrow AB^2+HC^2=AC^2+BH^2\)
1) Xét tứ giác BCDE có
\(\widehat{BEC}=\widehat{BDC}\left(=90^0\right)\)
nên BCDE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
hay B,C,D,E cùng thuộc 1 đường tròn(đpcm)
Tam giác ABD vuông tại D có \(\cos\widehat{A}=\cos60^0=\dfrac{AD}{AB}=\dfrac{1}{2}\)
Tam giác AEC vuông tại E có \(\cos\widehat{A}=\cos60^0=\dfrac{AE}{AC}=\dfrac{1}{2}\)
Ta có \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{2}\right)\\\widehat{A}.chung\end{matrix}\right.\Rightarrow\Delta ADE\sim\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\dfrac{DE}{BC}=\dfrac{AD}{AB}=\dfrac{1}{2}\\ \Rightarrow2DE=BC\)
Bạn tự vẽ hình
Đặt \(AB=x\)
Xét \(\Delta DAB\) vuông tại D, ta có:
\(\cos A=\dfrac{AD}{AB}\) (tỉ số lượng giác)
\(\Rightarrow AD=AB.\cos A=x.\cos60^o=0,5x\)
Xét \(\Delta ADB\) và \(\Delta AEC\), ta có:
\(\left\{{}\begin{matrix}\widehat{A}chung\\\widehat{ABD}=\widehat{ACE\left(2gocphunhau\right)}\end{matrix}\right.\)
\(\Rightarrow\Delta ADB\sim\Delta AEC\left(g.g\right)\)
Xét \(\Delta ABC\) và \(\Delta ADE\), ta có:
\(\left\{{}\begin{matrix}\widehat{A}chung\\\dfrac{AB}{AC}=\dfrac{AD}{AE}\left(\Delta ABD\sim\Delta ADE\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABC\sim\Delta ADE\left(c.g.c\right)\\ \Rightarrow\dfrac{AB}{AD}=\dfrac{BC}{DE}\\ \Rightarrow\dfrac{x}{0,5x}=\dfrac{BC}{DE}\\ \Rightarrow BC=\dfrac{DE.x}{0,5x}=2DE\)