K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

góc BAM chung

=>ΔABM đồng dạng với ΔACN

=>AM/AN=AB/AC

=>AM*AC=AN*AB và AM/AB=AN/AC

b: Xét ΔAMN và ΔABC có

AM/AB=AN/AC

góc MAN chung

=>ΔAMN đòng dạng với ΔABC

c: ΔAMN đồng dạng với ΔABC

=>S AMN/S ABC=(AM/AB)^2=(cos60)^2=1/4

=>S ABC=4*S AMN

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

\(\widehat{BAM}\) chung

Do đó: ΔABM~ΔACN

b: Xét ΔPNB vuông tại N và ΔPMC vuông tại M có

\(\widehat{NPB}=\widehat{MPC}\)(hai góc đối đỉnh)

Do đó: ΔPNB~ΔPMC

=>\(\dfrac{PB}{PC}=\dfrac{NB}{MC}\)

=>\(PB\cdot MC=NB\cdot PC\)

c: Ta có; ΔAMB~ΔANC

=>\(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)

=>\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Xét ΔAMN và ΔABC có

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

\(\widehat{MAN}\) chung

Do đó: ΔAMN~ΔABC

24 tháng 4 2020

a, xét tam giác AEB và tam giác AIC có : ^A chung

^AIC = ^AEB = 90

=> tam giác AEB đồng dạng tam giác AIC (g-g)

b, tam giác AEB đồng dạng với tam giác AIC (câu a)

=> AE/AB = AI/AC (Đn)

xét tam giác AIE và tam giác ACB có : ^A chung

=> tam giác AIE đồng dạng với tam giác ACB (c-g-c)