K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
15 tháng 3 2020
a) Ta có: ABEˆ=12ABQˆ(BE là tia pg)
ABNˆ=12ABCˆ(BD là tia pg)
⇒ABEˆ+ABNˆ=12ABQˆ+12ABCˆ
=12(ABQˆ+ABCˆ)=12.180o=900=DBEˆk
Áp dụng t/c đoạn thẳng nối trung điểm của 2 cạnh trong 1 tam giác thì // với cạnh còn lại
→MN // BC hay MDMD // BC.BC.
⇒MDBˆ=DBPˆ
mà DBPˆ=MBDˆ
⇒MDBˆ=MBDˆ⇒ΔMBD
⇒MB=MD(1)
Do MD // BC hay ME // BQ ⇒MEBˆ=EBQˆ
mà EBQˆ=MBEˆ⇒MEBˆ=MBEˆ.
⇒ΔMEB⇒ΔMEB cân tại M ⇒ME=MB(2)
Lại có: MA=MB(gt)(3)
Từ (1);(2);(3)⇒MB=MD=ME=MA..
Xét ΔAMD;ΔBMEΔAMD;ΔBME:
MA=MB(cmt)
AMDˆ=BMEˆ(đ2)
MD=ME(cmt)
⇒ΔAMD=ΔBME(c.g.c)⇒ΔAMD=ΔBME(c.g.
⇒ADMˆ=BEMˆ
mà 2 góc này ở vị trí so le trong ⇒AD⇒AD // BE.
⇒DBEˆ+ADBˆ=180o (trong cùng phía)
⇒90o+ADBˆ=180o⇒ADBˆ=90o
⇒BD⊥AP.
tự kẻ hình:3333
a) vì BE là phân giác của QBA=> B1=B2=QBA/2
vì BD là phân giác của ABC=> B3=B4=ABC/2
ta có EBD= B2+B3=QBA/2 +ABC/2= QBA+ABC/2= 180 độ/2=90 độ ( QBA kề bù với ABC)
trong tứ giác AEBD có EBD= 90 độ=> AEBD là HCN=> EBD=BDA=DAE=AEB= 90 độ
=> BEQ= 90 độ ( kề bù với AEB), BDP= 90 độ( kề bù với BDA)
=> BE vuông góc với AQ, BD vuông góc với AP
b)vì AEBD là hcn => AE=BD,
xét tam giác BEQ và tam giác BEA có
B1=B2(gt)
BE chung
BEQ=BEA(=90 độ)
=> tam giác BEQ= tam gáic BEA(gcg)
=> AE=EQ ( hai cạnh tương ứng)
ta có DBP+EBQ= 90 độ( EBD= 90 độ)
VÌ EBQ vuông tại E=> EQB+EBQ= 90 độ
=> DBP=EQB (=90 độ-EBQ)
xét tam giác BEQ và tam giác PDB có
EQ=BD(=AE)
BEQ=PDB(=90 độ)
DBP=EQB(cmt)
=> tam giác BEQ= tam gáic PDB(gcg)
=> QB=PB ( hai cạnh tương ứng)
=> B là trung điểm của PQ
c) xét tam giác AED và tam giác DBA có
AE=BD(cmt)
DAE=BDA(=90 độ)
AD chung
=> tam giác AED= tam giác DBA (cgc)
=> AB=DE( hai cạnh tương ứng)