Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N K
Theo các xác định điểm M, N ta có:
\(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB};\overrightarrow{AN}=\dfrac{2}{3}\overrightarrow{AC}.\)
Theo tính chất trung điểm của MN ta có:
\(\overrightarrow{AK}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\right)\)
\(=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\).
\(\overrightarrow{CN}=2\overrightarrow{NA}\Leftrightarrow\overrightarrow{CA}+\overrightarrow{AN}=-2\overrightarrow{AN}\)
\(\Leftrightarrow-\overrightarrow{AC}=-3\overrightarrow{AN}\Rightarrow\overrightarrow{AN}=\frac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AB}\) (do M là trung điểm AB)
\(\overrightarrow{AK}=\frac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\frac{1}{2}\left(\frac{1}{2}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\right)=\frac{1}{4}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\)
\(\Rightarrow\left\{{}\begin{matrix}m=\frac{1}{4}\\n=\frac{1}{6}\end{matrix}\right.\)
A B C M N K D
Do K là trung điểm của MN nên \(\overrightarrow{AK}=\dfrac{1}{2}\left(\overrightarrow{AM}+\overrightarrow{AN}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\right)\)
\(=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{AC}\).
\(\overrightarrow{AD}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\).
\(\overrightarrow{KD}=\overrightarrow{KA}+\overrightarrow{AD}=\)\(-\dfrac{1}{4}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}+\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\).
\(\overrightarrow{CN}=2\overrightarrow{NA}\Leftrightarrow\overrightarrow{CA}+\overrightarrow{AN}=-2\overrightarrow{AN}\Leftrightarrow\overrightarrow{AN}=\frac{1}{3}\overrightarrow{AC}\)
\(\overrightarrow{AK}=\frac{1}{2}\overrightarrow{AM}+\frac{1}{2}\overrightarrow{AN}=\frac{1}{4}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\Rightarrow\overrightarrow{KA}=-\frac{1}{4}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}\)
\(\overrightarrow{KD}=\overrightarrow{KA}+\overrightarrow{AD}=\left(-\frac{1}{4}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}\right)+\left(\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\right)\)
\(=\frac{1}{4}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\Rightarrow\left\{{}\begin{matrix}m=\frac{1}{4}\\n=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow m-n=-\frac{1}{12}\)
A B C K I
a)
\(\overrightarrow{AK}=\overrightarrow{AI}+\overrightarrow{IK}=\overrightarrow{AI}+\dfrac{1}{2}\overrightarrow{IB}=\overrightarrow{AI}+\dfrac{1}{2}\left(\overrightarrow{IA}+\overrightarrow{AB}\right)\)
\(=\overrightarrow{AI}+\dfrac{1}{2}\overrightarrow{IA}+\dfrac{1}{2}\overrightarrow{AB}\)\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AI}\).
b) Theo câu a:
\(\overrightarrow{AK}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AI}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}.\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{4}\overrightarrow{AC}\).
Câu 1:
Gọi E là trung điểm của KC
=>AK=KE=EC
Xét ΔBKC có CM/CB=CE/CK
nên ME//BK
Xét ΔAME có AI/AM=AK/AE
nên IK//ME
=>IK//BK
=>B,I,K thẳng hàng