Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trên tia đối của MA lấy D sao cho MA = MD
tam giác ABM = DCM (c.g.c)
=>DC=AB
Xét tam giác ACD có:
DC+AC > AD (bất đẳng thức tam giác)
mà AD=MA+MD(cmt)
DC=AB(cmt)
=>AB+AC>2AM(ĐPCM)
a) Xét ∆ vuông BDM và ∆ vuông MCE ta có :
BM = MC (gt)
DMB = CME ( đối đỉnh)
=> ∆BDM = ∆MCE ( ch-gn)
b) => BD = EC ( 2 góc tương ứng
Ta có : DM < BM ( Trong ∆ vuông cạnh huyền luôn luôn lớn hơn cạnh góc vuông )
Mà BM = MC
=> DM < MC ( trái đk đề bài )
E B A C M D O
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm
Gọi K là trung điểm của AC
Lúc đó: NK là đường trung bình của \(\Delta ABC\Rightarrow NK//BC,NK=\frac{1}{2}BC\)
Từ giả thiết suy ra \(AB=BN=CN\Rightarrow BM=\frac{1}{2}AB\)
Xét \(\Delta AMB\)và \(\Delta CKN\)có:
AB = CN \(\left(=\frac{1}{2}BC\right)\)
\(\widehat{ABM}=\widehat{CNK}\)(\(AB//NK\), đồng vị)
BM = NK \(\left(=\frac{1}{2}AB\right)\)
Suy ra \(\Delta AMB\)\(=\Delta CKN\left(c-g-c\right)\)
\(\Rightarrow AM=CK\)(hai cạnh tương ứng)
Mà \(CK=\frac{1}{2}AC\Rightarrow AM=\frac{1}{2}AC\)
hay AC = 2AM (đpcm)
Trên tia đối của tia MA lấy E sao cho AM=ME=1/2.AE
Nối C với E. Xét tam giác AMB và tam giác CME có :
AM = ME ( cách lấy )
AMB = CME ( đối đỉnh )
BM = CM ( gt )
=> Tam giác AMB = CME ( c.g.c )
=> AB = CE ( 2 cạnh tương ứng )
Xét tam giác AEC có :
AC + CE > AE ( BĐT tam giác )
=> AC + AB > 2AM ( ĐPCM)
Bạn tham khảo tại link này
https://h.vn/hoi-dap/question/219851.html
Câu hỏi của Hà Kiều Anh - Toán lớp 7 | Học trực tuyến