K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2021

Gọi O là tâm đường tròn ngoại tiếp tam giác ABC

Trong (O) có BC là dây cung không đi qua O có D là trung điểm BC

\(\Rightarrow OD\bot BC\)

Tương tự \(\Rightarrow\left\{{}\begin{matrix}OE\bot AC\\OF\bot AB\end{matrix}\right.\)

Ta có: \(\angle ODB+\angle OFB=90+90=180\Rightarrow OFBD\) nội tiếp

Tương tự \(\Rightarrow OECD,OEAF\) nội tiếp

\(\Rightarrow\left(AFE\right),\left(BFD\right),\left(CDE\right)\) cùng đi qua điểm O là tâm đường tròn ngoại tiếp tam giác ABC

Xét \(\Delta ABC\) có E,F lần lượt là trung điểm AC,AB

\(\Rightarrow\) EF là đường trung bình \(\Rightarrow EF=\dfrac{1}{2}BC\)

Tương tự \(\Rightarrow\left\{{}\begin{matrix}DF=\dfrac{1}{2}AC\\DE=\dfrac{1}{2}AB\end{matrix}\right.\)

Xét \(\Delta AFE\) và \(\Delta FBD:\) Ta có: \(\left\{{}\begin{matrix}AF=BF\\AE=FD=\dfrac{1}{2}AC\\FE=BD=\dfrac{1}{2}BC\end{matrix}\right.\)

\(\Rightarrow\Delta AFE=\Delta FBD\left(c-c-c\right)\Rightarrow\left(AFE\right)=\left(FBD\right)\) 

Tương tự \(\Rightarrow\left(CDE\right)=\left(AFE\right)\Rightarrow\left(AFE\right)=\left(FBD\right)=\left(CDE\right)\)

2 tháng 7 2021

thanks

 

12 tháng 7 2017

các đường trong là sao bạn

12 tháng 7 2017

à là đường tròn, mình nhầm

24 tháng 8 2018

a, Chứng minh IFEK là hình bình hành có tâm O. Chứng minh IK ⊥ KE => IFEKlà hình chữ nhật => I,F,E,K cùng thuộc (O;OI)

b, Ta có:  I D E ^   =   90 0 => Tam giác IDE vuông tại D 

Chứng minh rằng KD ⊥ DF => ∆ KDF vuông

What cái gì vậy tui đăng câu hỏi cơ mà

19 tháng 12 2021

a) Tứ giác ACEH có

ˆACE=ˆEHA=900ACE^=EHA^=900(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> ˆEAH=ˆHCEEAH^=HCE^(cùng chắn EH)

lại có ˆADF=ˆACFADF^=ACF^(cùng chắn AF)

mà ˆACF+ˆHCE=900ACF^+HCE^=900do ˆACE=900ACE^=900

=>ˆEAH+ˆADF=900EAH^+ADF^=900

=> DF⊥ABDF⊥AB

mà EH⊥ABEH⊥AB

=> DF//EHDF//EH

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D

25 tháng 3 2020

a) Tứ giác ACEH có

\(\widehat{ACE}=\widehat{EHA}=90^0\)(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> \(\widehat{EAH}=\widehat{HCE}\)(cùng chắn EH)

lại có \(\widehat{ADF}=\widehat{ACF}\)(cùng chắn AF)

mà \(\widehat{ACF}+\widehat{HCE}=90^0\)do \(\widehat{ACE}=90^0\)

=>\(\widehat{EAH}+\widehat{ADF}=90^0\)

=> \(DF\perp AB\)

mà \(EH\perp AB\)

=> \(DF//EH\)

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D