Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Võ Hồng Nhung
1 phút trước (15:05)
Cho tam giác ABC. Gọi D, E, F lần lượt là trung điểm của BC, AC, AB. Gọi O là 1 điểm bất kì. A' là điểm đối xứng với O qua D, B' là điểm đối xứng với O qua E, C' là điểm đối xứng với O qua F. Chứng minh AA', BB', CC' đồng quy tại 1 điểm.
Xét tam giác COA tao có FD là đường trung bình
=> FD = 1/2 A'C'
chứng minh tương tự FD = 1/2 AC => A'C' =AC
chứng minh tương tự B'C"= BC; A'B'=AB
vậy tam giác ABC =tam giác A'B'C'
Tứ giác AOBM có các đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành suy ra :
BM // OA, BM = OA (1)
Chứng minh tương tự ta có :
NC // OA, NC = OA (2)
Từ (1) và (2) suy ra BM // NC, BM = NC
Vậy MNCB là hình bình hành
A B C D E F O B' A' C'
Xét tứ giác AB'CO, có AE=EC, OE=EB' =>AB'CO là hình bình hành=>AB'//CO và AB'=CO (1)
Tương tự, A'B //CO và A'B=CO (2)
Từ (1) và(2) => AB'//A'B và AB'=A'B =>AB'A'B là hình bình hành => AA' và BB' cắt nhau tại trung điểm mỗi đường(*)
Tương tự, BB' và CC' cắt nhau tại trung điểm mỗi đường(**)
Từ (*0 và (**) => AA',BB',CC' đồng quy