Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O là tâm đường tròn ngoại tiếp tam giác ABC
Trong (O) có BC là dây cung không đi qua O có D là trung điểm BC
\(\Rightarrow OD\bot BC\)
Tương tự \(\Rightarrow\left\{{}\begin{matrix}OE\bot AC\\OF\bot AB\end{matrix}\right.\)
Ta có: \(\angle ODB+\angle OFB=90+90=180\Rightarrow OFBD\) nội tiếp
Tương tự \(\Rightarrow OECD,OEAF\) nội tiếp
\(\Rightarrow\left(AFE\right),\left(BFD\right),\left(CDE\right)\) cùng đi qua điểm O là tâm đường tròn ngoại tiếp tam giác ABC
Xét \(\Delta ABC\) có E,F lần lượt là trung điểm AC,AB
\(\Rightarrow\) EF là đường trung bình \(\Rightarrow EF=\dfrac{1}{2}BC\)
Tương tự \(\Rightarrow\left\{{}\begin{matrix}DF=\dfrac{1}{2}AC\\DE=\dfrac{1}{2}AB\end{matrix}\right.\)
Xét \(\Delta AFE\) và \(\Delta FBD:\) Ta có: \(\left\{{}\begin{matrix}AF=BF\\AE=FD=\dfrac{1}{2}AC\\FE=BD=\dfrac{1}{2}BC\end{matrix}\right.\)
\(\Rightarrow\Delta AFE=\Delta FBD\left(c-c-c\right)\Rightarrow\left(AFE\right)=\left(FBD\right)\)
Tương tự \(\Rightarrow\left(CDE\right)=\left(AFE\right)\Rightarrow\left(AFE\right)=\left(FBD\right)=\left(CDE\right)\)